Search results

1 – 10 of 116
Article
Publication date: 18 November 2013

Paras Ram and Vikas Kumar

The aim of the present study is to examine the ferrohydrodynamic laminar boundary layer flow of electrically non-conducting magnetic fluid on a uniformly heated and radially…

Abstract

Purpose

The aim of the present study is to examine the ferrohydrodynamic laminar boundary layer flow of electrically non-conducting magnetic fluid on a uniformly heated and radially stretchable disk with or without rotation in the presence of an externally applied magnetic field.

Design/methodology/approach

Governing equations give rise to highly non-linear coupled partial differential equations which are reduced to a set of ordinary differential equations in dimensionless form by the means of conventional similarity transformation. These equations are further discretized using central finite difference scheme. And, the solution is obtained in MATLAB environment by finding the missing boundary conditions using shooting method.

Findings

The effects of magnetic field dependent viscosity and rotation strength parameter on velocity and temperature profiles are investigated. Besides, the other significant physical quantities such as radial and tangential skin frictions, rate of heat transfer and boundary layer displacement thickness are also computed. The obtained results are discussed quantitatively and qualitatively.

Originality/value

Heat transfer in ferrofluid flow over a radially stretchable and uniformly heated rotating disk has not been investigated yet.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 27 April 2020

Umair Rashid and Haiyi Liang

In this article, we consider the magnetohydrodynamic (MHD) nanofluid flow over a rotating stretchable disk through porous medium. For porous medium, Darcy’s relation is used. It…

203

Abstract

Purpose

In this article, we consider the magnetohydrodynamic (MHD) nanofluid flow over a rotating stretchable disk through porous medium. For porous medium, Darcy’s relation is used. It also encompassed the impact of nanoparticles shape on MHD nanofluid flow and heat transfer. The effect of thermal radiation and Joule heating is also being considered.

Design/methodology/approach

Three categories of nanoparticles are taken into deliberation, i.e. copper, silver and titanium oxide. The nanofluid is made of pure water and various types of sphere- and lamina-shaped nanoparticles. By using appropriate similarity transformation, the governing partial differential equations are transformed to ordinary one. The coupled ordinary differential equations system is tackled numerically by bvp4c method.

Findings

The impact of various pertinent parameters, i.e. solid volume fraction, Hartman number, thermal radiations parameter, Reynolds number, Eckert number, porosity parameter and ratio parameter, on flow and Nusselt number with a fixed value of Prandtl number at 6.2 is discussed in details. The obtained results are presented in the concluding section. The lamina shape of nanoparticles in silver-water performed an excellent role on temperature distribution. The heat transfer rate of lamina shape in copper-water was found to be greater in the system of flow regime.

Originality/value

The authors have discussed the shape effect of nanoparticles on MHD nanofluid flow over a rotating stretchable disk through porous medium using three categories of nanoparticles, such as copper, silver and titanium oxide. To the best of the authors’ knowledge, this is the first study on mass and heat transfer nanofluid flow and no such study is yet published in literature. A detailed mathematical analysis has also to be carried out to prove the regularity of model. The authors believe that the numerical results are original and have not been copied from any other sources.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 September 2018

M. Muthtamilselvan and A. Renuka

The purpose of this paper is to investigate the nanofluid flow and heat transfer induced by two co- axially rotating disks using Buongiorno’s model. This model took into account…

Abstract

Purpose

The purpose of this paper is to investigate the nanofluid flow and heat transfer induced by two co- axially rotating disks using Buongiorno’s model. This model took into account the Brownian diffusion and thermophoresis effects due to the presence of nanoparticles.

Design/methodology/approach

The governing partial differential equation was transformed into a set of nonlinear ordinary differential equations by using similarity transformation and solved numerically using shooting techniques.

Findings

The present work is a comparison study of Maxwell-Garnett model and modified Maxwell model for the effective thermal conductivity of nanofluids. The effects of different involved parameters on velocity and temperature profile are examined graphically. Numerical values of skin friction coefficient and Nusselt number are computed and studied.

Originality/value

It is found that the results of azimuthal velocity profile are an increasing function of upper disk stretching parameter. The radial and axial velocity profile is enlarged for a large value of lower stretching parameter. Fluid temperature decays for large values Reynolds number and lower disk stretching parameter.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 24 September 2019

Sumaira Qayyum, Muhammad Ijaz Khan, Tasawar Hayat and Ahmed Alsaedi

The purpose of this study is to analyze the Entropy generation analysis and heat transport in three-dimensional flow between two stretchable disks. Joule heating and heat…

Abstract

Purpose

The purpose of this study is to analyze the Entropy generation analysis and heat transport in three-dimensional flow between two stretchable disks. Joule heating and heat generation/absorption are incorporated in the thermal equation. Thermo-diffusion effect is also considered. Flow is conducting for time-dependent applied magnetic field. Induced magnetic field is not taken into consideration. Velocity and thermal slip conditions at both the disks are implemented. The flow problem is modeled by using Navier–Stokes equations with entropy generation rate and Bejan number.

Design/methodology/approach

Von Karman transformations are used to reduce the nonlinear governing expressions into an ordinary one and then tackled by homotopy analysis method for convergent series solutions. The nonlinear expressions for total entropy generation rate are obtained with appropriate transformations. The impacts of different flow variables on velocity, temperature, entropy generation rate and Bejan number are described graphically. Velocity, temperature and concentration gradients are discussed in the presence of flow variables.

Findings

Axial, radial and tangential velocity profiles show decreasing trend for larger values of velocity slip parameters. For a larger Brinkman number, the entropy generation increases, while a decreasing trend is noticed for Bejan number.

Originality/value

To the best of the authors’ knowledge, no such analyses have been reported in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 January 2023

Neha Vijay and Kushal Sharma

The investigation of fluid flow over a rotating disk has been increasing due to the spread of machine technology. Because of this development, we scrutinized the…

Abstract

Purpose

The investigation of fluid flow over a rotating disk has been increasing due to the spread of machine technology. Because of this development, we scrutinized the Magnetohydrodynamic (MHD) flow of hybrid nanofluid caused by a decelerating rotating disk with Ohmic heating, Soret and Dufour effects. The disk's angular velocity is taken to be an inversely time-dependent linear function. Moreover, the temperature-dependent viscosity of hybrid nanofluid is incorporated in the present investigation. Methanol is considered as base fluid, while copper oxide (CuO) and magnesium oxide (MgO) are nanoparticles.

Design/methodology/approach

Estimated fundamental partial differential equations of flow problems are altered as a dimensionless system of ordinary differential equations using appropriate similarity transformation and solved using a numerical technique: BVP Midrich scheme in Maple software. The impression of emerging non-dimensional parameters is portrayed graphically. All outcomes are shown in the velocity, temperature and concentration profiles.

Findings

The developed flow problem involves a non-dimensional parameter (A) that reveals the deceleration of the disk. For larger values of A, the disk decelerates faster and for some fixed time, the fluid surrounding the disk revolves more rapidly than the disk itself. The radial velocity of fluid diminishes and axial velocity becomes uniform when the disk is subjected to wall suction velocity (B).

Originality/value

This analysis is significant in biomedical engineering, cancer therapeutic, manufacturing industries and nano-drug suspension in pharmaceuticals. The novelty of the current study is the hybrid nanofluid flow with Ohmic heating, Soret and Dufour effects on a decelerating rotating disk. To the best of the author's knowledge, no such consideration has been published in the literature.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 24 August 2021

Muhammad Faisal Javed, Mohammed Jameel, Muhammad Ijaz Khan, Sumaira Qayyum, Niaz B. Khan and Tufail Ahmad Khan

This study aims to focus on second grade fluid flow over a rotating disk in the presence of chemical reaction. Uniform magnetic field is also taken into account. Because of the…

Abstract

Purpose

This study aims to focus on second grade fluid flow over a rotating disk in the presence of chemical reaction. Uniform magnetic field is also taken into account. Because of the smaller magnetic Reynolds number, induced magnetic field is negligible. Heat equation is constructed by considering heat source/sink.

Design/methodology/approach

Suitable variables are used to transform nonlinear partial differential equations to ordinary ones. Convergent series solutions are attained by applying homotopy analysis method.

Findings

Trends of different parameters on concentration, velocity and temperature are shown graphically. Skin friction coefficient and local Nusselt number are calculated and investigated under the effect of elaborated parameters. An elevation in the value of magnetic field parameter causes collapse in the velocity distributions. Velocity distribution in increasing function of viscoelastic parameter. Temperature and concentration profiles are decreasing functions of viscoelastic parameter. Concentration distribution reduces by increasing the chemical reaction parameter. There is more surface drag force for larger M, while opposite behavior is noted for β.

Originality/value

To the best of the authors’ knowledge, such consideration is yet to be published in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 October 2018

Tasawar Hayat, Tayyaba Ayub, Taseer Muhammad, Ahmed Alsaedi and M. Mustafa

The purpose of this paper is to construct mathematical model for squeezed flow of carbon-water nanofluid between parallel disks considering Darcy–Forchheimer porous medium…

Abstract

Purpose

The purpose of this paper is to construct mathematical model for squeezed flow of carbon-water nanofluid between parallel disks considering Darcy–Forchheimer porous medium. Thermal conductivity of carbon nanotubes is estimated through the well-known Xue model. Such research work is not carried out in the past even in the absence of Darcy–Forchheimer porous space. Forchheimer equation is preferred here to account for both low and high velocity inertial effects. Researchers also found that dispersion of carbon nanotubes in water elevates the thermal conductivity of resulting nanofluid by 100 per cent.

Design/methodology/approach

Homotopy analysis method (HAM) is used for the convergent series solutions of the governing system.

Findings

Nusselt number at the lower disk increases when squeezing parameter Sq enlarges. This illustrates that heat transfer rate at the lower wall can be enhanced by increasing the squeezing velocity of the lower disk. The results demonstrate a decreasing trend in temperature profile for increasing volume fraction of carbon nanotubes. Moreover, improvement in heat transfer rate because of existence of carbon nanotubes is also apparent. A significant enhancement in temperature profile is depicted when inertial permeability coefficient is enhanced. Skin friction coefficients at the lower and upper disks are higher for MWCNTs in comparison to the SWCNTs.

Originality/value

To the best of author’s knowledge, no such consideration has been given in the literature yet.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 September 2021

Taimoor Salahuddin, Ali Haider and Metib Alghamdi

The current investigation is communicated to analyze the characteristics of squeezed second grade nanofluid flow enclosed by infinite channel in the existence of both heat…

Abstract

Purpose

The current investigation is communicated to analyze the characteristics of squeezed second grade nanofluid flow enclosed by infinite channel in the existence of both heat generation and variable viscosity. The leading non-linear energy and momentum PDEs are converted into non-linear ODEs by using suitable analogous approach.

Design/methodology/approach

Then the acquired non-linear problem is numerically calculated by using Bvp4c (built in) technique in MATLAB.

Findings

The influence of certain appropriate physical parameters, namely, squeezed number, fluid parameter, Brownian motion, heat generation, thermophoresis parameter, Prandtl number, Schmidt number and variable viscosity parameter on temperature, velocity and concentration distributions are studied and deliberated in detail. Numerical calculations of Sherwood number, Nusselt number and skin friction for distinct estimations of appearing parameters are analyzed through graphs and tables. It is examined that for large values of squeezing parameter, the velocity profile increases, whereas opposite behavior is noticed for large values of variable viscosity and fluid parameter. Moreover, temperature profile increases for large values of Brownian motion, thermophoresis parameter and squeezed parameter and decreases by increases Prandtl number and heat generation. Moreover, concentration profile increases for large values of Brownian motion parameter and decreases by increases thermophoresis parameter, squeezed parameter and Schmidt number.

Originality/value

No one has ever taken infinite squeezed channel having second grade fluid model with variable viscosity and heat generation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 December 2019

Nilankush Acharya, Suprakash Maity and Prabir Kumar Kundu

Hybrid nanofluids are of significant engrossment for their considerable heat transport rate. The steady flow of an incompressible viscous electrically conducted hybrid nanofluid…

Abstract

Purpose

Hybrid nanofluids are of significant engrossment for their considerable heat transport rate. The steady flow of an incompressible viscous electrically conducted hybrid nanofluid is considered over a rotating disk under a magnetic field. Titanium oxide (TiO2) and ferrous (CoFe2O4) nanoparticles are used with their physical properties and water is considered as host liquid. The purpose of this paper is to analyze how hydrothermal integrity varies for hybrid nanosuspension over a spinning disk in the presence of magnetic orientation.

Design/methodology/approach

Governing equations with boundary conditions are transformed by similarity transformations and then solved numerically with RK-4 method. A comparison of linear and nonlinear thermal radiation for the above-mentioned parameters is taken and the efficiency of nonlinear radiation is established, the same over nanofluid and hybrid nanofluid is also discussed. Heat lines are observed and discussed for various parameters like magnetic field, concentration, suction and injection parameter, radiation effect and Prandtl number.

Findings

Suction and increasing nanoparticle concentration foster the radial and cross-radial velocities, whereas magnetization and injection confirm the reverse trend. The rate of increment of radial friction is quite higher for the usual nanosuspension. The calculated data demonstrate that the rate for hybrid nanofluid is 8.97 percent, whereas for nanofluid it is 15.06 percent. Double-particle suspension amplifies the thermal efficiency than that of a single particle. Magnetic and radiation parameters aid the heat transfer, but nanoparticle concentration and suction explore the opposite syndrome. The magnetic parameter increases the heat transport at 36.58 and 42.71 percent for nonlinear radiation and hybrid nanosuspension, respectively.

Originality/value

Nonlinear radiation gives a higher heat transport rate and for the radiation parameter it is almost double. This result is very significant for comparison between linear and nonlinear radiation. Heat lines may be observed by taking different nanoparticle materials to get some diverse result. Hydrothermal study of such hybrid liquid is noteworthy because outcomes of this study will aid nanoscience and nanotechnology in an efficient way.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 July 2019

Muhammad Ijaz Khan, Sumaira Qayyum, Tasawar Hayat and Ahmed Alsaedi

The purpose of this paper is to analyze the Sutterby fluid flow by a rotating disk with homogeneous-heterogeneous reactions. Inspection of heat transfer is through…

Abstract

Purpose

The purpose of this paper is to analyze the Sutterby fluid flow by a rotating disk with homogeneous-heterogeneous reactions. Inspection of heat transfer is through Cattaneo–Christov model. Stratification effect is also considered.

Design/methodology/approach

Nonlinear equations are solved by the homotopy technique.

Findings

Sutterby fluid flow by rotating disk is not considered yet. Here the authors intend to analyze it with Cattaneo–Christov heat flux and homogeneous-heterogeneous reactions. Thermal stratification is also taken into consideration.

Originality/value

No such work is yet done in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 116