Search results

1 – 10 of 647
Article
Publication date: 8 December 2023

Rajesh Kumar S., Nishchay Sadrani and Kannan B.T.

The purpose of this study reports the effects of aspect ratio (AR) on mean flow characteristics of the cruciform orifice jet.

Abstract

Purpose

The purpose of this study reports the effects of aspect ratio (AR) on mean flow characteristics of the cruciform orifice jet.

Design/methodology/approach

The aspect ratio is the height-to-width ratio of the lobe of the cruciform shape. The aspect ratios considered are 0.25, 0.5, 0.75, 1, 2, 3 and 4. The turbulent jet flow is issued through an orifice being fitted to the jet tunnel facility. The velocity measurements are recorded with the help of pitot-static tube connected to a digital manometer setup. The Reynolds number calculated using the equivalent diameter 50.46 × 10–3 m and exit velocity 51.23 m/s was 1.75 × 105. Based on the experimental data, the streamline velocity decay plots, the potential core length (PCL), mean velocity profiles and velocity half widths were plotted, and discussions were made based on the measured data. A smoke-based flow visualization was carried out at moderate Reynolds number 5396.

Findings

The PCL remains almost constant for the aspect ratio 0.25:1 and then starts decreasing for the aspect ratio 1:4. The decrease in PCL indicates improved mixing. The off-center peaks are found along the major axis in mean velocity profiles for almost all cruciform jets. More than one axis switching occurs and can be identified by the crossover points. The location of the first crossover point shifts forward, and the second crossover point shows an oscillating trend. The flow visualization exhibits the jet evolution, and the distance up to which the jet maintains the cruciform shape is increased with the aspect ratio.

Research limitations/implications

The experiments are limited to air in air jet under isothermal conditions.

Social implications

The cruciform orifices can be used as fuel injectors and in air-conditioning systems, thereby improving efficiency and energy usage.

Originality/value

The aspect ratio effects on PCL and axis switching are used to explain the mixing characteristics. Flow visualization was also used to support the discussion.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 May 2024

Lingfei Zhang, Longfeng Hou and Yihao Tao

Water jet propulsion is widely used in various military and civilian fields due to its advantages of simple structure and high propulsion efficiency. The process of mooring…

Abstract

Purpose

Water jet propulsion is widely used in various military and civilian fields due to its advantages of simple structure and high propulsion efficiency. The process of mooring involves utilizing specially designed equipment to secure a ship at a designated berth. During the process of water jet propulsion, the single propeller operates within a complex and turbulent three-dimensional flow. Hence, studying the coupling between the water jet propeller and the hull is critical to comprehending the characteristics of the device and the distribution of the flow field in detail.

Design/methodology/approach

Firstly, we conducted computational fluid dynamics (CFD)-based self-propulsion calculations to evaluate the interaction between the hull and the propeller. We subsequently analyzed the propeller's performance and the forces acting on the hull to understand how the presence or absence of the hull influenced the water jet propeller. Finally, we performed calculations and analysis of the cavitation characteristics of the coupling between the hull and the water jet propeller, considering different rotational speeds and water depths at the bottom of the pool.

Findings

The study demonstrated that the presence of the hull boundary layer under the hull-propeller coupling condition led to reduced uniformity of propeller inlet flow and lower efficiency of the propulsion pump. However, it also increased the bias toward low-flow conditions. Additionally, increasing the impeller speed led to a gradual increase in the cavitation volume within the water jet propeller, resulting in a gradual decrease in the propeller's performance.

Originality/value

This research provides the technical support required for effective design and operation of water jet propulsion systems. This paper involves studying and analyzing the performance and flow field of the coupling between the hull and propeller under mooring conditions with a specified hull model.

Details

Engineering Computations, vol. 41 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 May 2024

Fang Haifeng, Jun Zhang, Hanlin Sun and Lihua Cai

As a new type of spinning machine, the jet spinning machine absorbs the carding system of the rotating cup spinning series and the nozzle part of the jet spinning. This paper aims…

Abstract

Purpose

As a new type of spinning machine, the jet spinning machine absorbs the carding system of the rotating cup spinning series and the nozzle part of the jet spinning. This paper aims to intends to introduce the double carding structure currently studied by the rotating cup spinning into the jet spinning machine, and analyze the influence of the nozzle characteristic number on the flow field in the double carding structure to verify the advantages of the double carding structure.

Design/methodology/approach

The simulation is used to evaluate the performance of single/double split jet spinning and nozzle feature number, verify the technical advantages of double split jet spinning and evaluate the influence of nozzle feature number on flow field. The influence of the nozzle characteristic number on the flow pattern in the four models is compared. The advantages and disadvantages of a conventional single comb and a double comb with a bypass channel on the longer side of the transport channel as an additional air supply channel are also evaluated.

Findings

At present, the double comb technology of rotary cup spinning is being studied at home and abroad to improve the spinning quality and improve the difficult problem of mixed yarn with large difference in processing fiber properties. At present, the jet spinning machine combines the advantages of rotary cup spinning and jet spinning, absorbing the comb system of rotary cup spinning series and the nozzle part of jet spinning. Therefore, it is found that the introduction of the double-split structure into the wool jet spinning has research value to improve the spinning quality.

Originality/value

The purpose of this paper is to refer to the previous research on the double comb structure in rotary spinning, and to apply the double comb structure in the new jet spinning machine to improve the spinning quality. The simulation is used to evaluate the performance of single/double split jet spinning and nozzle feature number, verify the technical advantages of double split jet spinning and evaluate the influence of nozzle feature number on flow field.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 March 2024

Hakan F. Oztop, Burak Kiyak and Ishak Gökhan Aksoy

This study aims to focus on understanding how different jet angles and Reynolds numbers influence the phase change materials’ (PCMs) melting process and their capacity to store…

Abstract

Purpose

This study aims to focus on understanding how different jet angles and Reynolds numbers influence the phase change materials’ (PCMs) melting process and their capacity to store energy. This approach is intended to offer novel insights into enhancing thermal energy storage systems, particularly for applications where heat transfer efficiency and energy storage are critical.

Design/methodology/approach

The research involved an experimental and numerical analysis of PCM with a melting temperature range of 22 °C–26°C under various conditions. Three different jet angles (45°, 90° and 135°) and two container angles (45° and 90°) were tested. Additionally, two different Reynolds numbers (2,235 and 4,470) were used to explore the effects of jet outlet velocities on PCM melting behaviour. The study used a circular container and analysed the melting process using the hot air inclined jet impingement (HAIJI) method.

Findings

The obtained results showed that the average temperature for the last time step at Ф = 90° and Re = 4,470 is 6.26% higher for Ф = 135° and 14.23% higher for Ф = 90° compared with the 45° jet angle. It is also observed that the jet angle, especially for Ф = 90°, is a much more important factor in energy storage than the Reynolds number. In other words, the jet angle can be used as a passive control parameter for energy storage.

Originality/value

This study offers a novel perspective on the effective storage of waste heat transferred with air, such as exhaust gases. It provides valuable insights into the role of jet inclination angles and Reynolds numbers in optimizing the melting and energy storage performance of PCMs, which can be crucial for enhancing the efficiency of thermal energy storage systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 5 February 2024

Krištof Kovačič, Jurij Gregorc and Božidar Šarler

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Abstract

Purpose

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Design/methodology/approach

The physical model is posed in the mixture formulation and copes with the unsteady, incompressible, isothermal, Newtonian, low turbulent two-phase flow. The computational fluid dynamics numerical solution is based on the half-space finite volume discretisation. The geo-reconstruct volume-of-fluid scheme tracks the interphase boundary between the gas and the liquid. To ensure numerical stability in the transition regime and adequately account for turbulent behaviour, the k-ω shear stress transport turbulence model is used. The model is validated by comparison with the experimental measurements on a vertical, downward-positioned GDVN configuration. Three different combinations of air and water volumetric flow rates have been solved numerically in the range of Reynolds numbers for airflow 1,009–2,596 and water 61–133, respectively, at Weber numbers 1.2–6.2.

Findings

The half-space symmetry allows the numerical reconstruction of the dripping, jetting and indication of the whipping mode. The kinetic energy transfer from the gas to the liquid is analysed, and locations with locally increased gas kinetic energy are observed. The calculated jet shapes reasonably well match the experimentally obtained high-speed camera videos.

Practical implications

The model is used for the virtual studies of new GDVN nozzle designs and optimisation of their operation.

Originality/value

To the best of the authors’ knowledge, the developed model numerically reconstructs all three GDVN flow regimes for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Case study
Publication date: 1 August 2023

Harshika Jain and Sanjay Dhamija

The case aims to understand and analyse the capital structure decisions made by a profit-making, growing organisation which aimed to be India’s premier airline and the market…

Abstract

Learning outcomes

The case aims to understand and analyse the capital structure decisions made by a profit-making, growing organisation which aimed to be India’s premier airline and the market leader. The company that had pursued a high debt policy, to take advantage of the financial leverage that it would get, was now facing problems in an operating environment that proved to be challenging. A decline in operating profit, coupled with high-interest costs and an uncertain environment with cutthroat competition, had caused the company to plunge into losses. Attempts to deleverage by equity infusion were proving to be difficult. The case can be used in MBA, Executive Education and doctoral programmes. The learning objectives of this case are: to analyse the capital structure of the company, to interpret the relationship between financial leverage and risk, to assess the pecking order theory, to analyse the nuances of the aviation sector and the factors influencing the profitability of the companies in the aviation industry, to estimate the risks and the rewards associated with foreign currency loans, to evaluate the magnifying impact of the financial leverage and to propose deleveraging methods like sale and leaseback, debt conversion to equity and devise a revival strategy for the company.

Case overview/synopsis

The case discusses the dilemma faced by Naresh Goyal, promoter and chairman of Jet Airways (India) Limited. At the initial stage, Jet Airways, like many other companies in its growth phase, relied on borrowed funds to meet its investment needs. However, over-reliance on borrowed funds with just one equity infusion resulted in a high leverage ratio and an aggressive capital structure. Moreover, the company operated in a sector that was highly regulated, with competition that was cutthroat and a cost structure that was volatile. A high operating risk, coupled with high financial leverage, pushed the company into incurring losses. Having run out of cash, Jet Airways eventually defaulted on loan repayments to its lenders. Facing the eventuality of losing control of the company to lenders or to a strategic investor, Goyal was trying to figure out a way to save the company from insolvency and liquidation. It was becoming increasingly difficult for Goyal to keep Jet Airways, the company he had nurtured like a baby, airborne.

Complexity academic level

The case can be taught in both online and offline modes of delivery in a 90-minute session. Post-covid, the delivery mode of classes has changed. In online sessions, it may be a challenging task to ensure student participation.

Supplementary material

Teaching notes are available for educators only.

Subject code

CSS 1: Accounting and Finance.

Details

Emerald Emerging Markets Case Studies, vol. 13 no. 2
Type: Case Study
ISSN: 2045-0621

Keywords

Article
Publication date: 3 July 2023

Hakan F. Oztop, Muhammed Gür, Fatih Selimefendigil and Hakan Coşanay

The purpose of this study is to do a numerical analysis of the jet to a body filled with phase change material (PCM). The melting of the PCM filled body was investigated by the…

Abstract

Purpose

The purpose of this study is to do a numerical analysis of the jet to a body filled with phase change material (PCM). The melting of the PCM filled body was investigated by the hot jet flow. Four different values of the Reynolds number were taken, ranging from 5 × 103 = Re = 12.5 103. Water, Al2O3 1%, Al2O3 2% and hybrid nanofluid (HNF; Al2O3–Ag mixture) were used as fluid types and the effects of fluid type on melting were investigated. At 60 °C, the jet stream was impinged on the PCM filled body at different Reynolds numbers.

Design/methodology/approach

Two-dimensional analysis of melting of PCM inserted A block via impinging turbulent slot jet is numerically studied. Governing equations for turbulent flow are solved by using the finite element method via analysis and system fluent R2020.

Findings

The obtained results showed that the best melting occurred when the Reynolds number increased and the HNF was used. However, the impacts of using alumina-water nanofluid were slight. At Re = 12,500, phase completion time was reduced by about 13.77% when HNF was used while this was only 3.93% with water + alumina nanofluid as compared to using only water at Re = 5,000. In future studies, HNF concentrations will change the type of nanoenhanced PCMs. In addition, the geometry and jet parameters of the PCM-filled cube can be changed.

Originality/value

Effects of impinging jet onto PCM filled block and control of melting via impinging hot jet of PCM. Thus, novelty of the work is to control of melting in a block by impinging hot jet and nanoparticles.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 May 2023

Ezhilmaran G., Sekar S., Sathish Kumar K. and Thanigaiarasu S.

This study aims to investigate the effect of slanted perforation diameter in tabs for the control of Mach 1.4 underexpanded supersonic jet flow characteristics.

Abstract

Purpose

This study aims to investigate the effect of slanted perforation diameter in tabs for the control of Mach 1.4 underexpanded supersonic jet flow characteristics.

Design/methodology/approach

Numerical investigation was carried out for NPR 5 to analyze the effect of slanted perforation diameter in tabs to control the Mach 1.4 jet. Four sets of tabs with slanted circular perforation geometries (Φp = 1, 1.5, 2 and 2.5 mm) were considered in this study. The inclination angle of 20° (αP) with reference to the jet axis was maintained constant for all the four tabs considered.

Findings

Determined value indicates there is a 68%, 71%, 73% and 75% drop in supersonic core for the Φp = 1, 1.5, 2.0 and 2.5 mm, respectively. The results show that the tabs with 2.5 mm perforation diameter were found to be efficient in reducing the supersonic jet core in comparison with other tab cases. The reduction in supersonic core length is due to the extent of miniscule vortices exuviating from slanted small and large diameter perforation in the tabs.

Practical implications

The concept of slanted perforation can be applied in scramjet combustion, which finds its best application in hypersonic vehicles and in noise suppression in fighter aircraft.

Originality/value

Slanted perforation and circular shapes with different diameters have not been studied in the supersonic regime. Examining the effect of circular diameter in slanted perforation is an innovation in this research paper.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 April 2023

V.M. Jyothy and G. Jims John Wessley

In this study, 2D density-based SST K-turbulence model with compressibility effect is used to observe the flow separation and shock wave interactions of the flow. The wall static…

Abstract

Purpose

In this study, 2D density-based SST K-turbulence model with compressibility effect is used to observe the flow separation and shock wave interactions of the flow. The wall static pressure and Mach number differences are also evaluated. This study aims to discuss the aforementioned objectives

Design/methodology/approach

This study outlines the evaluation of the performance of a 2D convergent–divergent nozzle with various triangular jet tab configurations that can be used for effective thrust vectoring of aerial vehicles.

Findings

From the study, it is seen that the shadow effect induced by the tab with a height of 30% produces higher oblique wave deflection and higher thrust deflection at the exit nozzle. The numerical calculation concluded that thrust vector efficiency of 30% jet tab is, 0.46%. In the case of 10% jet tab height the thrust vector efficiency is higher, i.e. 1.647%.

Research limitations/implications

2D study.

Practical implications

The optimization will open up a new focus in TVC that can be implemented for effective attitude control in aircrafts.

Social implications

Used in future aircrafts.

Originality/value

The influence of shadowing ratio with different tab heights at different Mach numbers has not been reported in the previous studies. Few of the studies on jet tab are focused on the acoustic studies and not pertaining to the aerodynamic aspects. The multi jet configuration, the combination of location, shapes and other parametric analysis have not been covered in the previous studied.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 11 January 2023

Naren Shankar Radha Krishnan, Irish Angelin S., Ganesan V.G. and Sathish Kumar K.

In comparison to a nozzle with a larger/finite separation distance (Thanigaiarasu et al., 2019), a thin-lip nozzle (Srinivasarao et al., 2017) minimizes drag. Coaxial nozzles with…

Abstract

Purpose

In comparison to a nozzle with a larger/finite separation distance (Thanigaiarasu et al., 2019), a thin-lip nozzle (Srinivasarao et al., 2017) minimizes drag. Coaxial nozzles with thin lips are an appropriate tool for studying high subsonic jets because it does not create a dominant re-circulation zone. This study aims to analyze the characteristic of separation distances, between primary and secondary nozzles, within the range of 0.7–3.2 mm which can be considered a thin lip.

Design/methodology/approach

A separation distance of 0.7  (Papamoschou, 2004), 1.7  and 2.65 mm (Lovaraju and Rathakrishnan, 2011) is considered for the present study. The main nozzle exit Mach number is maintained at a subsonic condition of Mach 0.6, and the co-flowing nozzle exit Mach number is varied from 0% (secondary jet stopped/single jet) to 100% (Mach 0.6) in steps of 20% with respect to the main nozzle exit Mach number. A comparison was made between these velocity ratios for all three lip thicknesses in the present study. Design mesh and analysis were done by using Gambit 2.6.4 and Fluent 6.12. Velocity contours and turbulence contours were studied for qualitative analysis.

Findings

When lip thickness increases from 0.7 to 2.65 mm, the potential core length (PCL) of the primary jet decreases marginally. Additionally, the PCL of the primary jet elongates significantly as the velocity ratio increases. The primary shear layer is dominant at 20% co-flow (20 PCF), less dominant at 60% co-flow (60 PCF) and almost disappeared at 100% co-flow (100 PCF). Concurrently, the secondary shear layer almost disappeared in 20 PCF, dominant in 60 PCF and more dominant in 100 PCF. Different zones such as initial merging, intermediate and fully merged zones are quantitatively and qualitatively analyzed.

Practical implications

Co-flow nozzle is used in turbofan engine exhaust. The scaled-down model of a turbofan engine has been analyzed. Core length is directly proportional to the jet noise. The PCL signifies the jet noise reduction in a high-speed jet. For a low-velocity ratio, the potential core is reduced and hence can reduce the jet noise. At the same time, as the velocity ratio increases, the mass flow rate of the coaxial increases. The increase in the mass flow increases the thrust of the engine. The aircraft engine designer should analyze the requirement of the aircraft and choose the optimal velocity ratio coaxial nozzle for the engine exhaust (Papamoschou, 2004).

Originality/value

There have been many research studies carried out previously at various lip thickness such as 0.4  (Georgiadis, 2003), 0.7  (Papamoschou, 2004), 1.5  (Srinivasarao et al., 2014a), 1.7  (Sharma et al., 2008), 2  (Naren, Thanigaiarasu and Rathakrishnan, 2016), 2.65  (Lovaraju and Rathakrishnan, 2011), 3  (Inturiet al., 2022) and 3.2 mm (Perumal et al., 2020). However, there is no proper study to vary the lip thickness in this range from 0.7 to 3.2 mm to understand the flow behavior of a co-flowing jet.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 647