Search results

1 – 10 of 148
Article
Publication date: 11 September 2023

Mohd Irfan and Anup Kumar Sharma

A progressive hybrid censoring scheme (PHCS) becomes impractical for ensuring dependable outcomes when there is a low likelihood of encountering a small number of failures prior…

Abstract

Purpose

A progressive hybrid censoring scheme (PHCS) becomes impractical for ensuring dependable outcomes when there is a low likelihood of encountering a small number of failures prior to the predetermined terminal time T. The generalized progressive hybrid censoring scheme (GPHCS) efficiently addresses to overcome the limitation of the PHCS.

Design/methodology/approach

In this article, estimation of model parameter, survival and hazard rate of the Unit-Lindley distribution (ULD), when sample comes from the GPHCS, have been taken into account. The maximum likelihood estimator has been derived using Newton–Raphson iterative procedures. Approximate confidence intervals of the model parameter and their arbitrary functions are established by the Fisher information matrix. Bayesian estimation procedures have been derived using Metropolis–Hastings algorithm under squared error loss function. Convergence of Markov chain Monte Carlo (MCMC) samples has been examined. Various optimality criteria have been considered. An extensive Monte Carlo simulation analysis has been shown to compare and validating of the proposed estimation techniques.

Findings

The Bayesian MCMC approach to estimate the model parameters and reliability characteristics of the generalized progressive hybrid censored data of ULD is recommended. The authors anticipate that health data analysts and reliability professionals will get benefit from the findings and approaches presented in this study.

Originality/value

The ULD has a broad range of practical utility, making it a problem to estimate the model parameters as well as reliability characteristics and the significance of the GPHCS also encourage the authors to consider the present estimation problem because it has not previously been discussed in the literature.

Article
Publication date: 22 December 2023

Iskandar Waini, Farah Nadzirah Jamrus, Natalia C. Roșca, Alin V. Roșca and Ioan Pop

This study aims to investigate the dual solutions for axisymmetric flow and heat transfer due to a permeable radially shrinking disk in copper oxide (CuO) and silver (Ag) hybrid…

Abstract

Purpose

This study aims to investigate the dual solutions for axisymmetric flow and heat transfer due to a permeable radially shrinking disk in copper oxide (CuO) and silver (Ag) hybrid nanofluids with radiation effect.

Design/methodology/approach

The partial differential equations that governed the problem will undergo a transformation into a set of similarity equations. Following this transformation, a numerical solution will be obtained using the boundary value problem solver, bvp4c, built in the MATLAB software. Later, analysis and discussion are conducted to specifically examine how various physical parameters affect both the flow characteristics and the thermal properties of the hybrid nanofluid.

Findings

Dual solutions are discovered to occur for the case of shrinking disk (λ < 0). Stronger suction triggers the critical values’ expansion and delays the boundary layer separation. Through stability analysis, it is determined that one of the solutions is stable, whereas the other solution exhibits instability, over time. Moreover, volume fraction upsurge enhances skin friction and heat transfer in hybrid nanofluid. The hybrid nanofluid’s heat transfer also heightened with the influence of radiation.

Originality/value

Flow over a shrinking disk has received limited research focus, in contrast to the extensively studied axisymmetric flow problem over a diverse set of geometries such as flat surfaces, curved surfaces and cylinder. Hence, this study highlights the axisymmetric flow due to a shrinking disk under radiation influence, using hybrid nanofluids containing CuO and Ag. Upon additional analysis, it is evidently shows that only one of the solutions exhibits stability, making it a physically dependable choice in practical applications. The authors are very confident that the findings of this study are novel, with several practical uses of hybrid nanofluids in modern industry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 March 2023

Florence Dami Ayegbusi, Emile Franc Doungmo Goufo and Patrick Tchepmo

The purpose of this study is to explore numerical scrutinization of micropolar and Walters-B non-Newtonian fluids motion under the influence of thermal radiation and chemical…

Abstract

Purpose

The purpose of this study is to explore numerical scrutinization of micropolar and Walters-B non-Newtonian fluids motion under the influence of thermal radiation and chemical reaction.

Design/methodology/approach

The two fluids micropolar and Walters-B liquid are considered to start flowing from the slot to the stretching sheet. A magnetic field of constant strength is imposed on their flow transversely. The problems on heat and mass transport are set up with thermal, chemical reaction, heat generation, etc. to form partial differential equations. These equations were simplified into a dimensionless form and solved using spectral homotopy analysis method (SHAM). SHAM uses the basic concept of both Chebyshev pseudospectral method and homotopy analysis method to obtain numerical computations of the problem.

Findings

The outcomes for encountered flow parameters for temperature, velocity and concentration are presented with the aid of figures. It is observed that both the velocity and angular velocity of micropolar and Walters-B and thermal boundary layers increase with increase in the thermal radiation parameter. The decrease in velocity and decrease in angular velocity occurred are a result of increase in chemical reaction. It is hoped that the present study will enhance the understanding of boundary layer flow of micropolar and Walters-B non-Newtonian fluid under the influences of thermal radiation, thermal conductivity and chemical reaction as applied in various engineering processes.

Originality/value

All results are presented graphically and all physical quantities are computed and tabulated.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 January 2024

Francesco Romanò, Mario Stojanović and Hendrik C. Kuhlmann

This paper aims to derive a reduced-order model for the heat transfer across the interface between a millimetric thermocapillary liquid bridge from silicone oil and the…

Abstract

Purpose

This paper aims to derive a reduced-order model for the heat transfer across the interface between a millimetric thermocapillary liquid bridge from silicone oil and the surrounding ambient gas.

Design/methodology/approach

Numerical solutions for the two-fluid model are computed covering a wide parametric space, making a total of 2,800 numerical flow simulations. Based on the computed data, a reduced single-fluid model for the liquid phase is devised, in which the heat transfer between the liquid and the gas is modeled by Newton’s heat transfer law, albeit with a space-dependent Biot function Bi(z), instead of a constant Biot number Bi.

Findings

An explicit robust fit of Bi(z) is obtained covering the whole range of parameters considered. The single-fluid model together with the Biot function derived yields very accurate results at much lesser computational cost than the corresponding two-phase fully-coupled simulation required for the two-fluid model.

Practical implications

Using this novel Biot function approach instead of a constant Biot number, the critical Reynolds number can be predicted much more accurately within single-phase linear stability solvers.

Originality/value

The Biot function for thermocapillary liquid bridges is derived from the full multiphase problem by a robust multi-stage fit procedure. The derived Biot function reproduces very well the theoretical boundary layer scalings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 April 2024

Surath Ghosh

Financial mathematics is one of the most rapidly evolving fields in today’s banking and cooperative industries. In the current study, a new fractional differentiation operator…

Abstract

Purpose

Financial mathematics is one of the most rapidly evolving fields in today’s banking and cooperative industries. In the current study, a new fractional differentiation operator with a nonsingular kernel based on the Robotnov fractional exponential function (RFEF) is considered for the Black–Scholes model, which is the most important model in finance. For simulations, homotopy perturbation and the Laplace transform are used and the obtained solutions are expressed in terms of the generalized Mittag-Leffler function (MLF).

Design/methodology/approach

The homotopy perturbation method (HPM) with the help of the Laplace transform is presented here to check the behaviours of the solutions of the Black–Scholes model. HPM is well known for its accuracy and simplicity.

Findings

In this attempt, the exact solutions to a famous financial market problem, namely, the BS option pricing model, are obtained using homotopy perturbation and the LT method, where the fractional derivative is taken in a new YAC sense. We obtained solutions for each financial market problem in terms of the generalized Mittag-Leffler function.

Originality/value

The Black–Scholes model is presented using a new kind of operator, the Yang-Abdel-Aty-Cattani (YAC) operator. That is a new concept. The revised model is solved using a well-known semi-analytic technique, the homotopy perturbation method (HPM), with the help of the Laplace transform. Also, the obtained solutions are compared with the exact solutions to prove the effectiveness of the proposed work. The different characteristics of the solutions are investigated for different values of fractional-order derivatives.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Abstract

Details

Understanding Financial Risk Management, Third Edition
Type: Book
ISBN: 978-1-83753-253-7

Article
Publication date: 30 April 2024

Omar Malla and Madhavan Shanmugavel

Parallelogram linkages are used to increase the stiffness of manipulators and allow precise control of end-effectors. They help maintain the orientation of connected links when…

Abstract

Purpose

Parallelogram linkages are used to increase the stiffness of manipulators and allow precise control of end-effectors. They help maintain the orientation of connected links when the manipulator changes its position. They are implemented in many palletizing robots connected with binary, ternary and quaternary links through both active and passive joints. This limits the motion of some joints and hence results in relative and negative joint angles when assigning coordinate axes. This study aims to provide a simplified accurate model for manipulators built with parllelogram linkages to ease the kinematics calculations.

Design/methodology/approach

This study introduces a simplified model, replacing each parallelogram linkage with a single (binary) link with an active and a passive joint at the ends. This replacement facilitates countering motion while preserving subsequent link orientations. Validation of kinematics is performed on palletizing manipulators from five different OEMs. The validation of Dobot Magician and ABB IRB1410 was carried out in real time and in their control software. Other robots from ABB, Yaskawa, Kuka and Fanuc were validated using control environments and simulators.

Findings

The proposed model enables the straightforward derivation of forward kinematics and transforms hybrid robots into equivalent serial-link robots. The model demonstrates high accuracy streamlining the derivation of kinematics.

Originality/value

The proposed model facilitates the use of classical methods like the Denavit–Hartenberg procedure with ease. It not only simplifies kinematics derivation but it also helps in robot control and motion planning within the workspace. The approach can also be implemented to simplify the parallelogram linkages of robots with higher degrees of freedom such as the IRB1410.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 March 2024

Ruoxing Wang, Shoukun Wang, Junfeng Xue, Zhihua Chen and Jinge Si

This paper aims to investigate an autonomous obstacle-surmounting method based on a hybrid gait for the problem of crossing low-height obstacles autonomously by a six wheel-legged…

Abstract

Purpose

This paper aims to investigate an autonomous obstacle-surmounting method based on a hybrid gait for the problem of crossing low-height obstacles autonomously by a six wheel-legged robot. The autonomy of obstacle-surmounting is reflected in obstacle recognition based on multi-frame point cloud fusion.

Design/methodology/approach

In this paper, first, for the problem that the lidar on the robot cannot scan the point cloud of low-height obstacles, the lidar is driven to rotate by a 2D turntable to obtain the point cloud of low-height obstacles under the robot. Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping algorithm, fast ground segmentation algorithm and Euclidean clustering algorithm are used to recognize the point cloud of low-height obstacles and obtain low-height obstacle in-formation. Then, combined with the structural characteristics of the robot, the obstacle-surmounting action planning is carried out for two types of obstacle scenes. A segmented approach is used for action planning. Gait units are designed to describe each segment of the action. A gait matrix is used to describe the overall action. The paper also analyzes the stability and surmounting capability of the robot’s key pose and determines the robot’s surmounting capability and the value scheme of the surmounting control variables.

Findings

The experimental verification is carried out on the robot laboratory platform (BIT-6NAZA). The obstacle recognition method can accurately detect low-height obstacles. The robot can maintain a smooth posture to cross low-height obstacles, which verifies the feasibility of the adaptive obstacle-surmounting method.

Originality/value

The study can provide the theory and engineering foundation for the environmental perception of the unmanned platform. It provides environmental information to support follow-up work, for example, on the planning of obstacles and obstacles.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 1 January 2024

Shrutika Sharma, Vishal Gupta, Deepa Mudgal and Vishal Srivastava

Three-dimensional (3D) printing is highly dependent on printing process parameters for achieving high mechanical strength. It is a time-consuming and expensive operation to…

Abstract

Purpose

Three-dimensional (3D) printing is highly dependent on printing process parameters for achieving high mechanical strength. It is a time-consuming and expensive operation to experiment with different printing settings. The current study aims to propose a regression-based machine learning model to predict the mechanical behavior of ulna bone plates.

Design/methodology/approach

The bone plates were formed using fused deposition modeling (FDM) technique, with printing attributes being varied. The machine learning models such as linear regression, AdaBoost regression, gradient boosting regression (GBR), random forest, decision trees and k-nearest neighbors were trained for predicting tensile strength and flexural strength. Model performance was assessed using root mean square error (RMSE), coefficient of determination (R2) and mean absolute error (MAE).

Findings

Traditional experimentation with various settings is both time-consuming and expensive, emphasizing the need for alternative approaches. Among the models tested, GBR model demonstrated the best performance in predicting both tensile and flexural strength and achieved the lowest RMSE, highest R2 and lowest MAE, which are 1.4778 ± 0.4336 MPa, 0.9213 ± 0.0589 and 1.2555 ± 0.3799 MPa, respectively, and 3.0337 ± 0.3725 MPa, 0.9269 ± 0.0293 and 2.3815 ± 0.2915 MPa, respectively. The findings open up opportunities for doctors and surgeons to use GBR as a reliable tool for fabricating patient-specific bone plates, without the need for extensive trial experiments.

Research limitations/implications

The current study is limited to the usage of a few models. Other machine learning-based models can be used for prediction-based study.

Originality/value

This study uses machine learning to predict the mechanical properties of FDM-based distal ulna bone plate, replacing traditional design of experiments methods with machine learning to streamline the production of orthopedic implants. It helps medical professionals, such as physicians and surgeons, make informed decisions when fabricating customized bone plates for their patients while reducing the need for time-consuming experimentation, thereby addressing a common limitation of 3D printing medical implants.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Book part
Publication date: 30 April 2024

Linda M. Waldron, Danielle Docka-Filipek, Carlie Carter and Rachel Thornton

First-generation college students in the United States are a unique demographic that is often characterized by the institutions that serve them with a risk-laden and deficit-based…

Abstract

First-generation college students in the United States are a unique demographic that is often characterized by the institutions that serve them with a risk-laden and deficit-based model. However, our analysis of the transcripts of open-ended, semi-structured interviews with 22 “first-gen” respondents suggests they are actively deft, agentic, self-determining parties to processes of identity construction that are both externally imposed and potentially stigmatizing, as well as exemplars of survivance and determination. We deploy a grounded theory approach to an open-coding process, modeled after the extended case method, while viewing our data through a novel synthesis of the dual theoretical lenses of structural and radical/structural symbolic interactionism and intersectional/standpoint feminist traditions, in order to reveal the complex, unfolding, active strategies students used to make sense of their obstacles, successes, co-created identities, and distinctive institutional encounters. We find that contrary to the dictates of prevailing paradigms, identity-building among first-gens is an incremental and bidirectional process through which students actively perceive and engage existing power structures to persist and even thrive amid incredibly trying, challenging, distressing, and even traumatic circumstances. Our findings suggest that successful institutional interventional strategies designed to serve this functionally unique student population (and particularly those tailored to the COVID-moment) would do well to listen deeply to their voices, consider the secondary consequences of “protectionary” policies as potentially more harmful than helpful, and fundamentally, to reexamine the presumption that such students present just institutional risk and vulnerability, but also present a valuable addition to university environments, due to the unique perspective and broader scale of vision their experiences afford them.

Details

Symbolic Interaction and Inequality
Type: Book
ISBN: 978-1-83797-689-8

Keywords

1 – 10 of 148