Search results

1 – 10 of over 3000
Article
Publication date: 30 April 2024

Omar Malla and Madhavan Shanmugavel

Parallelogram linkages are used to increase the stiffness of manipulators and allow precise control of end-effectors. They help maintain the orientation of connected links when…

Abstract

Purpose

Parallelogram linkages are used to increase the stiffness of manipulators and allow precise control of end-effectors. They help maintain the orientation of connected links when the manipulator changes its position. They are implemented in many palletizing robots connected with binary, ternary and quaternary links through both active and passive joints. This limits the motion of some joints and hence results in relative and negative joint angles when assigning coordinate axes. This study aims to provide a simplified accurate model for manipulators built with parllelogram linkages to ease the kinematics calculations.

Design/methodology/approach

This study introduces a simplified model, replacing each parallelogram linkage with a single (binary) link with an active and a passive joint at the ends. This replacement facilitates countering motion while preserving subsequent link orientations. Validation of kinematics is performed on palletizing manipulators from five different OEMs. The validation of Dobot Magician and ABB IRB1410 was carried out in real time and in their control software. Other robots from ABB, Yaskawa, Kuka and Fanuc were validated using control environments and simulators.

Findings

The proposed model enables the straightforward derivation of forward kinematics and transforms hybrid robots into equivalent serial-link robots. The model demonstrates high accuracy streamlining the derivation of kinematics.

Originality/value

The proposed model facilitates the use of classical methods like the Denavit–Hartenberg procedure with ease. It not only simplifies kinematics derivation but it also helps in robot control and motion planning within the workspace. The approach can also be implemented to simplify the parallelogram linkages of robots with higher degrees of freedom such as the IRB1410.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 February 2011

David Sanders, Giles Tewkesbury and Jasper Graham‐Jones

This paper aims to describe real time improvements to the performance and trajectories of robots for which paths had already been planned by some means, automatic or otherwise…

Abstract

Purpose

This paper aims to describe real time improvements to the performance and trajectories of robots for which paths had already been planned by some means, automatic or otherwise. The techniques are applied to industrial robots during the gross motions associated with pick and place tasks. Simple rules for path improvement are described.

Design/methodology/approach

The dynamics of the manipulator in closed form Lagrange equations are used to represent the dynamics by a set of second‐order coupled non‐linear differential equations. The form of these equations is exploited in an attempt to establish some simple rules. Sub‐optimal paths are improved by considering simple rules developed from the model of the machinery dynamics. By considering the physical limitations of the manipulator, performance was improved by refining pre‐calculated paths. Experiments were performed with a prototype robot and an old Puma 560 robot in a laboratory environment. Once the method had been tested successfully then experiments were conducted with a Kuka KR125 Robot at Ford Motor Company. The measured quantities for all the robots were drive currents to the motors (which represented the torques) and the joint angular positions.

Findings

The method of path refinement presented in this paper uses a simplified model of the robot dynamics to successfully improve the gross motions associated with a pick and place task. The advantage of using the input‐output form described was that intermediate non‐linearities (such as gear friction) and the motor characteristics were directly incorporated into the model.

Research limitations/implications

Even though many of the theoretical problems in manipulator dynamics have been solved, the question of how to best apply the theories to industrial manipulators is still being debated. In the work presented in this paper, information on system dynamics is used to produce simple rules for “path improvement”.

Practical implications

Most fast algorithms are for mobile robots and algorithms are scarcer for manipulators with revolute joints (the most popular type of industrial robot). This work presents real time methods that allow the robot to continue working while new global paths are automatically planned and improved as necessary.

Originality/value

Motion planning for manipulators with many degrees of freedom is a complex task and research in this area has been mostly restricted to static environments, offline simulation or virtual environments. This research is applied in real time to industrial robots with revolute joints.

Details

Assembly Automation, vol. 31 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 20 October 2014

Haitao Yang, Minghe Jin, Zongwu Xie, Kui Sun and Hong Liu

The purpose of this paper is to solve the ground verification and test method for space robot system capturing the target satellite based on visual servoing with time-delay in…

Abstract

Purpose

The purpose of this paper is to solve the ground verification and test method for space robot system capturing the target satellite based on visual servoing with time-delay in 3-dimensional space prior to space robot being launched.

Design/methodology/approach

To implement the approaching and capturing task, a motion planning method for visual servoing the space manipulator to capture a moving target is presented. This is mainly used to solve the time-delay problem of the visual servoing control system and the motion uncertainty of the target satellite. To verify and test the feasibility and reliability of the method in three-dimensional (3D) operating space, a set of ground hardware-in-the-loop simulation verification systems is developed, which adopts the end-tip kinematics equivalence and dynamics simulation method.

Findings

The results of the ground hardware-in-the-loop simulation experiment validate the reliability of the eye-in-hand visual system in the 3D operating space and prove the validity of the visual servoing motion planning method with time-delay compensation. At the same time, owing to the dynamics simulator of the space robot added in the ground hardware-in-the-loop verification system, the base disturbance can be considered during the approaching and capturing procedure, which makes the ground verification system realistic and credible.

Originality/value

The ground verification experiment system includes the real controller of space manipulator, the eye-in-hand camera and the dynamics simulator, which can veritably simulate the capturing process based on the visual servoing in space and consider the effect of time delay and the free-floating base disturbance.

Details

Industrial Robot: An International Journal, vol. 41 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 January 2010

Joonyoung Kim, Sung‐Rak Kim, Soo‐Jong Kim and Dong‐Hyeok Kim

The purpose of this paper is to maximize the speed of industrial robots by obtaining the minimum‐time trajectories that satisfy various constraints commonly given in the…

1233

Abstract

Purpose

The purpose of this paper is to maximize the speed of industrial robots by obtaining the minimum‐time trajectories that satisfy various constraints commonly given in the application of industrial robots.

Design/methodology/approach

The method utilizes the dynamic model of the robot manipulators to find the maximum kinematic constraints that are used with conventional trajectory patterns, such as trapezoidal velocity profiles and cubic polynomial functions.

Findings

The experimental results demonstrate that the proposed method can decrease the motion times substantially compared with the conventional kinematic method.

Practical implications

Although the method used a dynamic model, the computational burden is minimized by calculating dynamics only at certain points, enabling implementation of the method online. The proposed method is tested on more than 40 different types of robots made by Hyundai Heavy Industries Co. Ltd (HHI). The method is successfully implemented in Hi5, a new generation of HHI robot controller.

Originality/value

The paper shows that the method is computationally very simple compared with other minimum‐time trajectory‐planning methods, thus making it suitable for online implementation.

Details

Industrial Robot: An International Journal, vol. 37 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 June 2003

Joanna Kruczalak‐Jankowska and Kazimerz Kruczalak

The main purpose of this paper is to approach the legal problems of mass privatisation in Poland. The authors present the structure of national investment funds which intend to be…

Abstract

The main purpose of this paper is to approach the legal problems of mass privatisation in Poland. The authors present the structure of national investment funds which intend to be the experimental financial intermediaries in Poland. Their assets are quoted on the Stock Exchange in Warsaw from the beginning of May 1997. New and controversial roles of management firms are discussed in this paper.

Details

Journal of Economic Studies, vol. 30 no. 3/4
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 1 March 2013

Riaan Stopforth

The purpose of this paper is to investigate the mechanical, kinematic and biological aspects that would be required for a customized upper limb exoskeleton prototype operation.

Abstract

Purpose

The purpose of this paper is to investigate the mechanical, kinematic and biological aspects that would be required for a customized upper limb exoskeleton prototype operation.

Design/methodology/approach

The research contained a literature survey, design, simulation, development and testing of an exoskeleton arm.

Findings

An adjustable/customizable exoskeleton arm was developed with a kinematic model to allow the desired motion. Tests were performed to determine the feasibility of the system.

Originality/value

The paper shows how the authors researched, designed and developed an exoskeleton arm that had similar mechanical properties to those of a biological arm. The exoskeleton must allow customization and be adaptable to the operator, without the need for major alterations.

Details

Industrial Robot: An International Journal, vol. 40 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 June 2012

Wei You, Minxiu Kong, Lining Sun and Yanbin Diao

The purpose of this paper is to present a control system for a heavy duty industrial robot, including both the control structure and algorithm, which was designed and tested.

1229

Abstract

Purpose

The purpose of this paper is to present a control system for a heavy duty industrial robot, including both the control structure and algorithm, which was designed and tested.

Design/methodology/approach

An industrial PC with TwinCAT real‐time system is chosen as the motion control unit; EtherCAT is used for command transmission. The whole system has a decoupled and centralized control structure. A novel optimal motion generation algorithm based on modified cubic spline interpolation is illustrated. The execution time and work were chosen as the objective function. The constraints are the limits of torque, velocity and jerk. The motion commands were smooth enough throughout the execution period. By using the Lagangue equation and assumed modes methods, a dynamic model of heavy duty industrial robots is built considering the elastic of both joints and links. After that a compound control algorithm based on singular perturbation theory was designed for the servo control loop.

Findings

The final experimental results showed that the control commands and algorithms could easily be calculated and transmitted in one sample unit. Both the motion generation and servo control algorithm greatly improved the control performance of the robot.

Research limitations/implications

All parts of the control algorithm can be computed on‐line except the optimal motion generation part. The motion generation part is time consuming (about 2.5 seconds), which can only be performed off‐line. Hence future work will focus on improving the efficiency of this algorithm; therefore it could be performed online, increasing the robot's overall robustness and adaptability.

Originality/value

Aiming at the internal and external causes that limit the dynamic performance of heavy duty industrial robots, this paper proposes a realizable scheme of control system and includes both the control structure and algorithms. A novel optimal motion generation algorithm is presented.

Article
Publication date: 6 July 2015

Samir Mekid and M. Shang

The purpose of this paper is to discuss an example of modelling with experiments of robot prototype with dependent joint concept, including a full description of related…

Abstract

Purpose

The purpose of this paper is to discuss an example of modelling with experiments of robot prototype with dependent joint concept, including a full description of related functionalities. Reduction in active degrees of freedom in a machine can lead to improved accuracy, improved reliability and lower cost. The reconfiguration of machines and systems is a key technology for future responsive manufacturing systems. The concept of dependent joints helps to implement much specified sub-workspaces depending on functional needs in the machine.

Design/methodology/approach

This is inherently made possible using smart mechanical concepts having embedded sensors and reconfigurable control systems. This paper introduces structural reconfiguration systems and discusses a sample approach to functional reconfiguration.

Findings

A successful manipulator design with extended features when considering reduction in active degrees of freedom in a machine would lead to specific sub-workspace with improved accuracy, improved reliability and lower cost.

Research limitations/implications

Reduction in active degrees of freedom in a machine can lead not only towards a dedicated functional workspace but also towards improved accuracy, improved reliability and lower cost.

Originality/value

This paper is of value to engineers and researchers developing robotic manipulators for use in various aspects of industry.

Details

Journal of Engineering, Design and Technology, vol. 13 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 10 June 2022

Chao Tan, Huan Zhao and Han Ding

Branched articulated robots (BARs) are highly non-linear systems; accurate dynamic identification is critical for model-based control in high-speed and heavy-load applications…

Abstract

Purpose

Branched articulated robots (BARs) are highly non-linear systems; accurate dynamic identification is critical for model-based control in high-speed and heavy-load applications. However, due to some dynamic parameters being redundant, dynamic models are singular, which increases the calculation amount and reduces the robustness of identification. This paper aims to propose a novel methodology for the dynamic analysis and redundant parameters elimination of BARs.

Design/methodology/approach

At first, the motion of a rigid body is divided into constraint-dependent and constraint-independent. The redundancy of inertial parameters is analyzed from physical constraints. Then, the redundant parameters are eliminated by mapping posterior links to their antecedents, which can be applied for re-deriving the Newton–Euler formulas. Finally, through parameter transformation, the presented dynamic model is non-singular and available for identification directly.

Findings

New formulas for redundant parameters elimination are explicit and computationally efficient. This unifies the redundant parameters elimination of prismatic and revolute joints for BARs, and it is also applicable to other types of joints containing constraints. The proposed approach is conducive to facilitating the modelling phase during the robot identification. Simulation studies are conducted to illustrate the effectiveness of the proposed redundant parameters elimination and non-singular dynamic model determination. Experimental studies are carried out to verify the result of the identification algorithm.

Originality/value

This work proposes to determine and directly identify the non-redundant dynamic model of robots, which can help to reduce the procedure of obtaining the reversible regression matrix for identification.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 June 1954

Films Aid Machine Design. A Scottish firm of laundry engineers has perfected a system of film records as the basis on which machine design can be considered, and reports that the…

Abstract

Films Aid Machine Design. A Scottish firm of laundry engineers has perfected a system of film records as the basis on which machine design can be considered, and reports that the policy has been fully justified by results. Film records are made of a competent operator using a machine in her own manner using her own technique; this record is analysed and used as the basis of criticism from which to start building an improved unit. Slow‐motion projection allows time and motion analysis over a period of weeks when potential alterations in the technique and layout are considered.

Details

Work Study, vol. 3 no. 6
Type: Research Article
ISSN: 0043-8022

1 – 10 of over 3000