Search results

1 – 10 of 910
Article
Publication date: 20 December 2022

Biyanka Ekanayake, Alireza Ahmadian Fard Fini, Johnny Kwok Wai Wong and Peter Smith

Recognising the as-built state of construction elements is crucial for construction progress monitoring. Construction scholars have used computer vision-based algorithms to…

Abstract

Purpose

Recognising the as-built state of construction elements is crucial for construction progress monitoring. Construction scholars have used computer vision-based algorithms to automate this process. Robust object recognition from indoor site images has been inhibited by technical challenges related to indoor objects, lighting conditions and camera positioning. Compared with traditional machine learning algorithms, one-stage detector deep learning (DL) algorithms can prioritise the inference speed, enable real-time accurate object detection and classification. This study aims to present a DL-based approach to facilitate the as-built state recognition of indoor construction works.

Design/methodology/approach

The one-stage DL-based approach was built upon YOLO version 4 (YOLOv4) algorithm using transfer learning with few hyperparameters customised and trained in the Google Colab virtual machine. The process of framing, insulation and drywall installation of indoor partitions was selected as the as-built scenario. For training, images were captured from two indoor sites with publicly available online images.

Findings

The DL model reported a best-trained weight with a mean average precision of 92% and an average loss of 0.83. Compared to previous studies, the automation level of this study is high due to the use of fixed time-lapse cameras for data collection and zero manual intervention from the pre-processing algorithms to enhance visual quality of indoor images.

Originality/value

This study extends the application of DL models for recognising as-built state of indoor construction works upon providing training images. Presenting a workflow on training DL models in a virtual machine platform by reducing the computational complexities associated with DL models is also materialised.

Details

Construction Innovation , vol. 24 no. 4
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 1 June 2023

Johnny Kwok Wai Wong, Fateme Bameri, Alireza Ahmadian Fard Fini and Mojtaba Maghrebi

Accurate and rapid tracking and counting of building materials are crucial in managing on-site construction processes and evaluating their progress. Such processes are typically…

Abstract

Purpose

Accurate and rapid tracking and counting of building materials are crucial in managing on-site construction processes and evaluating their progress. Such processes are typically conducted by visual inspection, making them time-consuming and error prone. This paper aims to propose a video-based deep-learning approach to the automated detection and counting of building materials.

Design/methodology/approach

A framework for accurately counting building materials at indoor construction sites with low light levels was developed using state-of-the-art deep learning methods. An existing object-detection model, the You Only Look Once version 4 (YOLO v4) algorithm, was adapted to achieve rapid convergence and accurate detection of materials and site operatives. Then, DenseNet was deployed to recognise these objects. Finally, a material-counting module based on morphology operations and the Hough transform was applied to automatically count stacks of building materials.

Findings

The proposed approach was tested by counting site operatives and stacks of elevated floor tiles in video footage from a real indoor construction site. The proposed YOLO v4 object-detection system provided higher average accuracy within a shorter time than the traditional YOLO v4 approach.

Originality/value

The proposed framework makes it feasible to separately monitor stockpiled, installed and waste materials in low-light construction environments. The improved YOLO v4 detection method is superior to the current YOLO v4 approach and advances the existing object detection algorithm. This framework can potentially reduce the time required to track construction progress and count materials, thereby increasing the efficiency of work-in-progress evaluation. It also exhibits great potential for developing a more reliable system for monitoring construction materials and activities.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 5 October 2022

H.P.M.N.L.B. Moragane, B.A.K.S. Perera, Asha Dulanjalie Palihakkara and Biyanka Ekanayake

Construction progress monitoring (CPM) is considered a difficult and tedious task in construction projects, which focuses on identifying discrepancies between the as-built product…

Abstract

Purpose

Construction progress monitoring (CPM) is considered a difficult and tedious task in construction projects, which focuses on identifying discrepancies between the as-built product and the as-planned design. Computer vision (CV) technology is applied to automate the CPM process. However, the synergy between the CV and CPM in literature and industry practice is lacking. This study aims to fulfil this research gap.

Design/methodology/approach

A Delphi qualitative approach was used in this study by conducting two interview rounds. The collected data was analysed using manual content analysis.

Findings

This study identified seven stages of CPM; data acquisition, information retrieval, verification, progress estimation and comparison, visualisation of the results and schedule updating. Factors such as higher accuracy in data, less labourious process, efficiency and near real-time access are some of the significant enablers in instigating CV for CPM. Major challenges identified were occlusions and lighting issues in the site images and lack of support from the management. The challenges can be easily overcome by implementing suitable strategies such as familiarisation of the workforce with CV technology and application of CV research for the construction industry to grow with the technology in line with other industries.

Originality/value

This study addresses the gap pertaining to the synergy between the CV in CPM literature and the industry practice. This research contributes by enabling the construction personnel to identify the shortcomings and the opportunities to apply automated technologies concerning each stage in the progress monitoring process.

Details

Construction Innovation , vol. 24 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 8 September 2022

Johnny Kwok Wai Wong, Mojtaba Maghrebi, Alireza Ahmadian Fard Fini, Mohammad Amin Alizadeh Golestani, Mahdi Ahmadnia and Michael Er

Images taken from construction site interiors often suffer from low illumination and poor natural colors, which restrict their application for high-level site management purposes…

Abstract

Purpose

Images taken from construction site interiors often suffer from low illumination and poor natural colors, which restrict their application for high-level site management purposes. The state-of-the-art low-light image enhancement method provides promising image enhancement results. However, they generally require a longer execution time to complete the enhancement. This study aims to develop a refined image enhancement approach to improve execution efficiency and performance accuracy.

Design/methodology/approach

To develop the refined illumination enhancement algorithm named enhanced illumination quality (EIQ), a quadratic expression was first added to the initial illumination map. Subsequently, an adjusted weight matrix was added to improve the smoothness of the illumination map. A coordinated descent optimization algorithm was then applied to minimize the processing time. Gamma correction was also applied to further enhance the illumination map. Finally, a frame comparing and averaging method was used to identify interior site progress.

Findings

The proposed refined approach took around 4.36–4.52 s to achieve the expected results while outperforming the current low-light image enhancement method. EIQ demonstrated a lower lightness-order error and provided higher object resolution in enhanced images. EIQ also has a higher structural similarity index and peak-signal-to-noise ratio, which indicated better image reconstruction performance.

Originality/value

The proposed approach provides an alternative to shorten the execution time, improve equalization of the illumination map and provide a better image reconstruction. The approach could be applied to low-light video enhancement tasks and other dark or poor jobsite images for object detection processes.

Details

Construction Innovation , vol. 24 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 16 November 2022

Hesam Khorrami Shad, Kenneth Tak Wing Yiu, Ruggiero Lovreglio and Zhenan Feng

This paper aims to explore augmented reality (AR) applications in construction safety academic literature and propose possible improvements for future scholarly works. The paper…

Abstract

Purpose

This paper aims to explore augmented reality (AR) applications in construction safety academic literature and propose possible improvements for future scholarly works. The paper explicitly focuses on AR integration with Construction 4.0 technologies as an effective solution to safety concerns in the construction industry.

Design/methodology/approach

This study applied a systematic review approach. In total, 387 potentially relevant articles from databases were identified. Once filtering criteria were applied, 29 eligible papers where selected. The inclusion criteria were being directly associated with construction safety focused on an AR application and AR interactions associated with the Construction 4.0 technologies.

Findings

This study investigated the structure of AR applications in construction safety. To this end, the authors studied the safety purposes of AR applications in construction safety: pre-event (intelligent operation, training, safety inspection and hazard alerting), during-event (pinpointing hazard) and post-event (safety estimation) applications. Then, the integration of AR with Construction 4.0 technologies was elaborated. The systematic review also revealed that the AR integration has contributed to developing several technical aspects of AR technology: display, tracking and human–computer interaction. The study results indicate that AR integration with construction is effective in mitigating safety concerns; however, further research studies are required to support this statement.

Originality/value

This study contributes to exploring applications and integrations of AR into construction safety in order to facilitate the leverage of this technology. This review can help encourage practitioners and researchers to conduct further academic investigations into AR application in construction safety.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 14 February 2019

Marco Gola, Gaetano Settimo and Stefano Capolongo

Several countries have carried out air quality monitoring in professional workplaces where chemicals are used. Health-care spaces have been less investigated. This paper aims to…

Abstract

Purpose

Several countries have carried out air quality monitoring in professional workplaces where chemicals are used. Health-care spaces have been less investigated. This paper aims to define a protocol, as developed by a research group, for inpatient rooms to understand the state of the art and to suggest design and management strategies for improving process quality.

Design/methodology/approach

Starting from the ISO-16000 standard and guidelines for monitoring activities, a protocol is defined for a one year investigation, with passive samplers. Through data analysis of the investigations and analysis of the cleaning and finishing products, heating, ventilation and air conditioning and maintenance activities, etc., it is possible to highlight the potential influences of chemical pollution.

Findings

A methodology is defined for understanding the chemical pollution and the possible factors related to construction materials, cleaning products and maintenance activities.

Research limitations/implications

The paper analyzes only a limited number of case studies because the monitoring activity is still in progress.

Practical implications

The investigation offers a starting point for a wide tool for the definition of design, maintenance and management strategies in health-care facilities.

Social implications

The research project, aimed at improving the knowledge of indoor air quality (IAQ) in inpatient rooms, is a starting point for a supporting tool for future regulations concerning health-care facilities.

Originality/value

IAQ is an issue on which many governments are focusing. Several health-care researchers have reported studies that aim at improving users’ health. Most investigations are about biological and physical risks, but chemical risks have been less studied. The paper suggests some design and management strategies for inpatient room.

Open Access
Article
Publication date: 25 September 2018

Ruwini Edirisinghe

The future construction site will be pervasive, context aware and embedded with intelligence. The purpose of this paper is to explore and define the concept of the digital skin of…

24594

Abstract

Purpose

The future construction site will be pervasive, context aware and embedded with intelligence. The purpose of this paper is to explore and define the concept of the digital skin of the future smart construction site.

Design/methodology/approach

The paper provides a systematic and hierarchical classification of 114 articles from both industry and academia on the digital skin concept and evaluates them. The hierarchical classification is based on application areas relevant to construction, such as augmented reality, building information model-based visualisation, labour tracking, supply chain tracking, safety management, mobile equipment tracking and schedule and progress monitoring. Evaluations of the research papers were conducted based on three pillars: validation of technological feasibility, onsite application and user acceptance testing.

Findings

Technologies learned about in the literature review enabled the envisaging of the pervasive construction site of the future. The paper presents scenarios for the future context-aware construction site, including the construction worker, construction procurement management and future real-time safety management systems.

Originality/value

Based on the gaps identified by the review in the body of knowledge and on a broader analysis of technology diffusion, the paper highlights the research challenges to be overcome in the advent of digital skin. The paper recommends that researchers follow a coherent process for smart technology design, development and implementation in order to achieve this vision for the construction industry.

Details

Engineering, Construction and Architectural Management, vol. 26 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 April 2012

Saiedeh N. Razavi, Ali Montaser and Osama Moselhi

Location awareness is essential to decisions pertinent to tracking and progress reporting, as well as to safety in construction projects. However, these applications have been…

Abstract

Purpose

Location awareness is essential to decisions pertinent to tracking and progress reporting, as well as to safety in construction projects. However, these applications have been mostly limited to the outdoor environment, where satellites for positioning information are in view. Recent studies on indoor location sensing systems are now overcoming this limitation and offering significant potential on construction practices, and radio frequency identification (RFID) is the most widely utilised technology for such application. The purpose of this paper is to address a wide range of protocols that are vital for RFID deployment for indoor construction. The paper identifies deployment settings to provide data acquisition with higher accuracy for indoor location sensing in construction.

Design/methodology/approach

A computational platform was designed to assess and evaluate the most suitable condition related to deployment of reference tags in construction. In this platform, a number of protocols and parameters are presented and their performance is evaluated. The evaluation scenarios were performed on a construction facility in Montreal, as well as in a controlled lab environment. The computational platform used for the study comprises the use of passive reference RFID tags and K Nearest Neighbour algorithm (K‐NN) for course‐grained detection of target's location and its classification into pre‐defined zone areas.

Findings

The studies resulted in a number of observations, findings, and lessons learned for RFID deployment in construction. The results indicate that: the speed of the reader is in direct relationship with the detection error rate; zone configuration effectiveness is in direct relationship with the deployed RFID read‐range; error rate on the controlled environment is significantly lower than rates in construction site; and stationary reader performs better than moving reader.

Originality/value

The paper's findings are expected to be of considerable value to researchers and practitioners involved in the utilisation of RFID technology in construction. The paper provides a set of helpful protocols for the deployment of passive RFIDs for automated onsite management of construction operations.

Article
Publication date: 18 June 2021

Karsten Winther Johansen, Rasmus Nielsen, Carl Schultz and Jochen Teizer

Real-time location sensing (RTLS) systems offer a significant potential to advance the management of construction processes by potentially providing real-time access to the…

Abstract

Purpose

Real-time location sensing (RTLS) systems offer a significant potential to advance the management of construction processes by potentially providing real-time access to the locations of workers and equipment. Many location-sensing technologies tend to perform poorly for indoor work environments and generate large data sets that are somewhat difficult to process in a meaningful way. Unfortunately, little is still known regarding the practical benefits of converting raw worker tracking data into meaningful information about construction project progress, effectively impeding widespread adoption in construction.

Design/methodology/approach

The presented framework is designed to automate as many steps as possible, aiming to avoid manual procedures that significantly increase the time between progress estimation updates. The authors apply simple location tracking sensor data that does not require personal handling, to ensure continuous data acquisition. They use a generic and non-site-specific knowledge base (KB) created through domain expert interviews. The sensor data and KB are analyzed in an abductive reasoning framework implemented in Answer Set Programming (extended to support spatial and temporal reasoning), a logic programming paradigm developed within the artificial intelligence domain.

Findings

This work demonstrates how abductive reasoning can be applied to automatically generate rich and qualitative information about activities that have been carried out on a construction site. These activities are subsequently used for reasoning about the progress of the construction project. Our framework delivers an upper bound on project progress (“optimistic estimates”) within a practical amount of time, in the order of seconds. The target user group is construction management by providing project planning decision support.

Research limitations/implications

The KB developed for this early-stage research does not encapsulate an exhaustive body of domain expert knowledge. Instead, it consists of excerpts of activities in the analyzed construction site. The KB is developed to be non-site-specific, but it is not validated as the performed experiments were carried out on one single construction site.

Practical implications

The presented work enables automated processing of simple location tracking sensor data, which provides construction management with detailed insight into construction site progress without performing labor-intensive procedures common nowadays.

Originality/value

While automated progress estimation and activity recognition in construction have been studied for some time, the authors approach it differently. Instead of expensive equipment, manually acquired, information-rich sensor data, the authors apply simple data, domain knowledge and a logical reasoning system for which the results are promising.

Article
Publication date: 13 June 2022

Zhengyi Chen, Keyu Chen and Jack C.P. Cheng

As an emerging visualization technology, virtual reality (VR) falls into the dilemma of having great potential but a low adoption degree in the architectural, engineering and…

Abstract

Purpose

As an emerging visualization technology, virtual reality (VR) falls into the dilemma of having great potential but a low adoption degree in the architectural, engineering and construction (AEC) industry. However, few studies paid attention to studying barriers affecting VR’s adoption and their inner mechanisms. This makes AEC users hard to catch the key points for VR’s implementations. This study aims to get a clear structure of these barriers and provide insights for the improvement.

Design/methodology/approach

First, 12 major VR-AEC adoption barriers were identified by a systematic literature review and expert interviews (EI). Second, EI and similarity aggregation method were conducted to achieve reliable barrier relationships. Third, interpretive structural modeling was used to establish a multi-level model for barriers. Finally, ten crucial barriers were targeted with a comprehensive strategy framework.

Findings

The findings help AEC stakeholders get a thorough understanding of the VR-AEC adoption barriers. Besides, the inner mechanism among barriers is revealed and analyzed, followed by a systematic strategy framework. It is anticipated that users could conduct more effective VR-AEC promotions in the future.

Originality/value

This paper is the first to propose a comprehensive literature review on the VR-AEC adoption barriers. In addition, this paper is novel in building a hierarchy model that explores barriers’ inner mechanism, where structural strategies are proposed.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 910