Search results

1 – 10 of over 7000
Article
Publication date: 11 July 2016

Jochen Teizer

The purpose of this paper is to investigate the critical time window for pro-active construction accident prevention and response. Large to small organisations throughout…

1833

Abstract

Purpose

The purpose of this paper is to investigate the critical time window for pro-active construction accident prevention and response. Large to small organisations throughout the entire construction supply chain continue to be challenged to adequately prevent accidents. Construction worker injuries and fatalities represent significant waste of resources. Although the five C’s (culture, competency, communication, controls and contractors) have been focusing on compliance, good practices and best-in-class strategies, even industry leaders have only marginal improvements in recorded safety statistics for many years.

Design/methodology/approach

Right-time vs real-time construction safety and health identifies three major focus areas to aid in the development of a strategic, as opposed to tactical, response. Occupational safety and health by design, real-time safety and health monitoring and alerts and education, training and feedback leveraging state-of-the-art technology provide meaningful predictive, quantitative and qualitative measures to identify, correlate and eliminate hazards before workers get injured or incidents cause collateral damage.

Findings

The current state and development of existing innovative initiatives in the occupational construction safety and health domain are identified. A framework for right-time vs real-time construction safety and health presents the specific focus on automated safety and health data gathering, analysis and reporting to achieve better safety performance. The developed roadmap for right-time vs real-time safety and health is finally tested in selected application scenarios of high concern in the construction industry.

Originality/value

A strategic roadmap to eliminate hazards and accidents through right-time vs real-time automation is presented that has practical as well as social implications on conducting a rigorous safety culture and climate in a construction business and its entire supply chain.

Open Access
Article
Publication date: 25 September 2018

Ruwini Edirisinghe

The future construction site will be pervasive, context aware and embedded with intelligence. The purpose of this paper is to explore and define the concept of the digital…

16908

Abstract

Purpose

The future construction site will be pervasive, context aware and embedded with intelligence. The purpose of this paper is to explore and define the concept of the digital skin of the future smart construction site.

Design/methodology/approach

The paper provides a systematic and hierarchical classification of 114 articles from both industry and academia on the digital skin concept and evaluates them. The hierarchical classification is based on application areas relevant to construction, such as augmented reality, building information model-based visualisation, labour tracking, supply chain tracking, safety management, mobile equipment tracking and schedule and progress monitoring. Evaluations of the research papers were conducted based on three pillars: validation of technological feasibility, onsite application and user acceptance testing.

Findings

Technologies learned about in the literature review enabled the envisaging of the pervasive construction site of the future. The paper presents scenarios for the future context-aware construction site, including the construction worker, construction procurement management and future real-time safety management systems.

Originality/value

Based on the gaps identified by the review in the body of knowledge and on a broader analysis of technology diffusion, the paper highlights the research challenges to be overcome in the advent of digital skin. The paper recommends that researchers follow a coherent process for smart technology design, development and implementation in order to achieve this vision for the construction industry.

Details

Engineering, Construction and Architectural Management, vol. 26 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 21 September 2015

Abiola Akanmu and Chimay J. Anumba

In spite of the benefits of virtual models in the building and construction industry, the full potential of these models, especially in the construction and operation…

1828

Abstract

Purpose

In spite of the benefits of virtual models in the building and construction industry, the full potential of these models, especially in the construction and operation phases, remains largely unrealized. With the increasing developments in information and communication technology, a number of attempts have been made to extend the use of these models, through the development of integration approaches and technologies. However, the issue of integrating the virtual model and the physical construction such as to enable bi-directional coordination, has not been adequately addressed. Thus, the purpose of this paper is to investigate the application of a cyber-physical systems (CPS) approach in enhancing bi-directional coordination between virtual models and the physical construction.

Design/methodology/approach

This research employs scenario development rapid prototyping to illustrate CPS integration in the construction industry, with a particular focus on facilitating bi-directional coordination. The proof-of-concept prototype systems developed were validated using a focus group consisting of industry practitioners.

Findings

Bi-directional coordination between virtual models and the physical construction has the potential to improve real-time progress monitoring and control of the construction process, tracking of changes and model updates, information exchange between the design office and the job site, real-time documentation of the as-built status of high-value components and improved sustainability practices.

Originality/value

This paper adds value to the construction industry by demonstrating the application of the CPS approach in enhancing bi-directional coordination between virtual models and the physical construction through the development of system architectures, scenarios and prototype systems.

Details

Engineering, Construction and Architectural Management, vol. 22 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 10 May 2019

Maxwell Fordjour Antwi-Afari, Heng Li, Johnny Kwok-Wai Wong, Olugbenga Timo Oladinrin, Janet Xin Ge, JoonOh Seo and Arnold Yu Lok Wong

Sensing- and warning-based technologies are widely used in the construction industry for occupational health and safety (OHS) monitoring and management. A comprehensive…

1614

Abstract

Purpose

Sensing- and warning-based technologies are widely used in the construction industry for occupational health and safety (OHS) monitoring and management. A comprehensive understanding of the different types and specific research topics related to the application of sensing- and warning-based technologies is essential to improve OHS in the construction industry. The purpose of this paper is to examine the current trends, different types and research topics related to the applications of sensing- and warning-based technology for improving OHS through the analysis of articles published between 1996 and 2017 (years inclusive).

Design/methodology/approach

A standardized three-step screening and data extraction method was used. A total of 87 articles met the inclusion criteria.

Findings

The annual publication trends and relative contributions of individual journals were discussed. Additionally, this review discusses the current trends of different types of sensing- and warning-based technology applications for improving OHS in the industry, six relevant research topics, four major research gaps and future research directions.

Originality/value

Overall, this review may serve as a spur for researchers and practitioners to extend sensing- and warning-based technology applications to improve OHS in the construction industry.

Details

Engineering, Construction and Architectural Management, vol. 26 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 18 June 2021

Karsten Winther Johansen, Rasmus Nielsen, Carl Schultz and Jochen Teizer

Real-time location sensing (RTLS) systems offer a significant potential to advance the management of construction processes by potentially providing real-time access to…

Abstract

Purpose

Real-time location sensing (RTLS) systems offer a significant potential to advance the management of construction processes by potentially providing real-time access to the locations of workers and equipment. Many location-sensing technologies tend to perform poorly for indoor work environments and generate large data sets that are somewhat difficult to process in a meaningful way. Unfortunately, little is still known regarding the practical benefits of converting raw worker tracking data into meaningful information about construction project progress, effectively impeding widespread adoption in construction.

Design/methodology/approach

The presented framework is designed to automate as many steps as possible, aiming to avoid manual procedures that significantly increase the time between progress estimation updates. The authors apply simple location tracking sensor data that does not require personal handling, to ensure continuous data acquisition. They use a generic and non-site-specific knowledge base (KB) created through domain expert interviews. The sensor data and KB are analyzed in an abductive reasoning framework implemented in Answer Set Programming (extended to support spatial and temporal reasoning), a logic programming paradigm developed within the artificial intelligence domain.

Findings

This work demonstrates how abductive reasoning can be applied to automatically generate rich and qualitative information about activities that have been carried out on a construction site. These activities are subsequently used for reasoning about the progress of the construction project. Our framework delivers an upper bound on project progress (“optimistic estimates”) within a practical amount of time, in the order of seconds. The target user group is construction management by providing project planning decision support.

Research limitations/implications

The KB developed for this early-stage research does not encapsulate an exhaustive body of domain expert knowledge. Instead, it consists of excerpts of activities in the analyzed construction site. The KB is developed to be non-site-specific, but it is not validated as the performed experiments were carried out on one single construction site.

Practical implications

The presented work enables automated processing of simple location tracking sensor data, which provides construction management with detailed insight into construction site progress without performing labor-intensive procedures common nowadays.

Originality/value

While automated progress estimation and activity recognition in construction have been studied for some time, the authors approach it differently. Instead of expensive equipment, manually acquired, information-rich sensor data, the authors apply simple data, domain knowledge and a logical reasoning system for which the results are promising.

Article
Publication date: 30 November 2020

Ammar Moohialdin, Fiona Lamari, Marc Miska and Bambang Trigunarsyah

Hot and humid climates (HHCs) are potential environmental hazards that directly affect construction workers' health and safety (HS) and negatively impact workers'…

Abstract

Purpose

Hot and humid climates (HHCs) are potential environmental hazards that directly affect construction workers' health and safety (HS) and negatively impact workers' productivity. Extensive research efforts have addressed the effects of HHCs. However, these efforts have been inconsistent in their approach for selecting factors influencing workers in such conditions. There are also increasing concerns about the drop-off in research interest to follow through intrusive and non-real-time measurements. This review aims to identify the major research gaps in measurements applied in previous research with careful attention paid to the factors that influence the intrusiveness and selection of the applied data collection methods.

Design/methodology/approach

This research integrates a manual subjective discussion with a thematic analysis of Leximancer software and an elaborating chronological, geographical and methodological review that yielded 701 articles and 76 peer-reviewed most related articles.

Findings

The literature included the physiological parameters as influencing factors and useful indicators for HHC effects and identified site activity intensity as the most influencing work-related factor. In total, three main gaps were identified: (1) the role of substantial individual and work-related factors; (2) managerial interventions and the application of the right time against the right symptoms, sample size and measurement intervals and (3) applied methods of data collection; particularly, the intrusiveness of the utilised sensors.

Practical implications

The focus of researchers and practitioners should be in applying nonintrusive, innovative and real-time methods that can provide crew-level measurements. In particular, methods that can represent the actual effects of allocated tasks are aligned with real-time weather measurements, so proactive HHC-related preventions can be enforced on time.

Originality/value

This review contributes to the field of construction workers' safety in HHCs and enables researchers and practitioners to identify the most influential individual and work-related factors in HHCs. This review also proposes a framework for future research with suggestions to cover the highlighted research gaps and contributes to a critical research area in the construction industry.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 25 July 2018

Xiaoli Yan and Young-Chan Kim

The purpose of this paper is to timely control of a construction collapse accident effectively during its development process by constructing a stage model and then…

Abstract

Purpose

The purpose of this paper is to timely control of a construction collapse accident effectively during its development process by constructing a stage model and then aligning IT with each stage to help provide the information for decision making.

Design/methodology/approach

Through comprehensive literature review, this paper first identifies the various IT applications in on-site construction monitoring and analyzes the existed disaster/crisis stage models, also the stage models are compared with the causation models to illustrate the strengths. Then, a three-step methodology was conducted to develop and apply the conceptual framework, including the construction of the four-stage model; the establishment of the conceptual framework of information technology (IT) support for management of construction accidents (ITSMCA); and a building collapse accident used to illustrate the proposed framework.

Findings

The accident is divided into four stages, which are incubation stage, outbreak stage, spreading stage and final stage. The real-time staged information to support decision making, such as the contributing factors of on-site workers, materials, equipment and workplace, can be provided by emerging IT. Therefore, IT is aligned with the variations of contributing factors’ attributes in the four stages and ITSMCA is constructed to help accidents management.

Research limitations/implications

The focus of the framework presented in this paper is that the stage model is effective for it catches the variations of the attributes whose values can be provided by IT rather than research on the practical application of the IT system. The construction and application of the IT system will be the research focus in the future.

Originality/value

This paper presents a stage model of a building collapse accident and gives a comprehensive conceptual framework of ITSMCA, which align the IT with different stages of the collapse accident. The ITSMCA proposes a feasible ideology and practical method for real-time management of the collapse accident during the process.

Details

Engineering, Construction and Architectural Management, vol. 25 no. 6
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 15 June 2021

Omobolanle Ruth Ogunseiju, Johnson Olayiwola, Abiola Abosede Akanmu and Chukwuma Nnaji

The physically-demanding and repetitive nature of construction work often exposes workers to work-related musculoskeletal injuries. Real-time information about the…

426

Abstract

Purpose

The physically-demanding and repetitive nature of construction work often exposes workers to work-related musculoskeletal injuries. Real-time information about the ergonomic consequences of workers' postures can enhance their ability to control or self-manage their exposures. This study proposes a digital twin framework to improve self-management ergonomic exposures through bi-directional mapping between workers' postures and their corresponding virtual replica.

Design/methodology/approach

The viability of the proposed approach was demonstrated by implementing the digital twin framework on a simulated floor-framing task. The proposed framework uses wearable sensors to track the kinematics of workers' body segments and communicates the ergonomic risks via an augmented virtual replica within the worker's field of view. Sequence-to-sequence long short-term memory (LSTM) network is employed to adapt the virtual feedback to workers' performance.

Findings

Results show promise for reducing ergonomic risks of the construction workforce through improved awareness. The experimental study demonstrates feasibility of the proposed approach for reducing overexertion of the trunk. Performance of the LSTM network improved when trained with augmented data but at a high computational cost.

Research limitations/implications

Suggested actionable feedback is currently based on actual work postures. The study is experimental and will need to be scaled up prior to field deployment.

Originality/value

This study reveals the potentials of digital twins for personalized posture training and sets precedence for further investigations into opportunities offered by digital twins for improving health and wellbeing of the construction workforce.

Details

Smart and Sustainable Built Environment, vol. 10 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 11 July 2016

Meiyin Liu, SangUk Han and SangHyun Lee

As a means of data acquisition for the situation awareness, computer vision-based motion capture technologies have increased the potential to observe and assess manual…

1055

Abstract

Purpose

As a means of data acquisition for the situation awareness, computer vision-based motion capture technologies have increased the potential to observe and assess manual activities for the prevention of accidents and injuries in construction. This study thus aims to present a computationally efficient and robust method of human motion data capture for the on-site motion sensing and analysis.

Design/methodology/approach

This study investigated a tracking approach to three-dimensional (3D) human skeleton extraction from stereo video streams. Instead of detecting body joints on each image, the proposed method tracks locations of the body joints over all the successive frames by learning from the initialized body posture. The corresponding body joints to the ones tracked are then identified and matched on the image sequences from the other lens and reconstructed in a 3D space through triangulation to build 3D skeleton models. For validation, a lab test is conducted to evaluate the accuracy and working ranges of the proposed method, respectively.

Findings

Results of the test reveal that the tracking approach produces accurate outcomes at a distance, with nearly real-time computational processing, and can be potentially used for site data collection. Thus, the proposed approach has a potential for various field analyses for construction workers’ safety and ergonomics.

Originality/value

Recently, motion capture technologies have rapidly been developed and studied in construction. However, existing sensing technologies are not yet readily applicable to construction environments. This study explores two smartphones as stereo cameras as a potentially suitable means of data collection in construction for the less operational constrains (e.g. no on-body sensor required, less sensitivity to sunlight, and flexible ranges of operations).

Details

Construction Innovation, vol. 16 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 22 July 2019

Ammar Saeed Mohammed Moohialdin, Fiona Lamari, Marc Miska and Bambang Trigunarsyah

The purpose of this paper shows the effect of hot and humid weather conditions (HHWCs) on workers that has resulted in considerable loss in the construction industry…

Abstract

Purpose

The purpose of this paper shows the effect of hot and humid weather conditions (HHWCs) on workers that has resulted in considerable loss in the construction industry, especially during the hottest periods due to decline in worker productivity (WP). Until the last few decades, there is very limited research on construction WP in HHWCs. Nevertheless, these studies have sparked interests on seeking for the most appropriate methods to assess the impact of HHWCs on construction workers.

Design/methodology/approach

This paper begins by reviewing the current measuring methods on WP in HHWCs, follows by presenting the potential impact of HHWCs on WP. The paper highlights the methodological deficiencies, which consequently provides a platform for scholars and practitioners to direct future research to resolve the significant productivity loss due to global warming. This paper highlights the need to identify the limitations and advantages of the current methods to formulate a framework of new approaches to measure the WP in HHWCs.

Findings

Results show that the methods used in providing real-time response on the effects of HHWCs on WP in construction at project, task and crew levels are limited. An integration of nonintrusive real-time monitoring system and local weather measurement with real-time data synchronisation and analysis is required to produce suitable information to determine worker health- and safety-related decisions in HHWCs.

Originality/value

The comprehensive literature review makes an original contribution to WP measurements filed in HHWCs in the construction industry. Results of this review provide researchers and practitioners with an insight into challenges associated with the measurements methods and solving practical site measurements issues. The findings will also enable the researchers and practitioners to bridge the identified research gaps in this research field and enhance the ability to provide accurate measures in HHWCs. The proposed research framework may promote potential improvements in the productivity measurements methods, which support researchers and practitioners in developing new innovative methods in HHWCs with the integration of the most recent monitoring technologies.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of over 7000