Search results

1 – 10 of 17
Click here to view access options
Article
Publication date: 14 March 2016

Xiaohong Lu, Xiaochen Hu, Hua Wang, Likun Si, Yongyun Liu and Lusi Gao

– The purpose of this paper is to establish a roughness prediction model of micro-milling Inconel718 with high precision.

Abstract

Purpose

The purpose of this paper is to establish a roughness prediction model of micro-milling Inconel718 with high precision.

Design/methodology/approach

A prediction model of micro-milling surface roughness of Inconel718 is established by SVM (support vector machine) in this paper. Three cutting parameters are involved in the model (spindle speed, cutting depth and feed speed). Experiments are carried out to verify the accuracy of the model.

Findings

The results show that the built SVM prediction model has high prediction accuracy and can predict the surface roughness value and variation law of micro-milling Inconel718.

Practical implication

Inconel718 with high strength and high hardness under high temperature is the suitable material for manufacturing micro parts which need a high strength at high temperature. Surface roughness is an important performance indication for micro-milling processing. Establishing a roughness prediction model with high precision is helpful to select the cutting parameters for micro-milling Inconel718.

Originality/value

The built SVM prediction model of micro-milling surface roughness of Inconel718 is verified by experiment for the first time. The test results show that the surface roughness prediction model can be used to predict the surface roughness during micro-milling Inconel718, and to provide a reference for selection of cutting parameters of micro-milling Inconel718.

Details

Industrial Lubrication and Tribology, vol. 68 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Click here to view access options
Article
Publication date: 3 October 2019

Dharmendra B.V., Shyam Prasad Kodali and Nageswara Rao Boggarapu

The purpose of this paper is to adopt the multi-objective optimization technique for identifying a set of optimum abrasive water jet machining (AWJM) parameters to achieve…

Abstract

Purpose

The purpose of this paper is to adopt the multi-objective optimization technique for identifying a set of optimum abrasive water jet machining (AWJM) parameters to achieve maximum material removal rate (MRR) and minimum surface roughness.

Design/methodology/approach

Data of a few experiments as per the Taguchi’s orthogonal array are considered for achieving maximum MRR and minimum surface roughness (Ra) of the Inconel718. Analysis of variance is performed to understand the statistical significance of AWJM input process parameters.

Findings

Empirical relations are developed for MRR and Ra in terms of the AWJM process parameters and demonstrated their adequacy through comparison of test results.

Research limitations/implications

The signal-to-noise ratio transformation should be applied to take in to account the scatter in the repetition of tests in each test run. But, many researchers have adopted this transformation on a single output response of each test run, which has no added advantage other than additional computational task. This paper explains the impact of insignificant process parameter in selection of optimal process parameters. This paper demands drawbacks and complexity in existing theories prior to use new algorithms.

Practical implications

Taguchi approach is quite simple and easy to handle optimization problems, which has no practical implications (if it handles properly). There is no necessity to hunt for new algorithms for obtaining solution for multi-objective optimization AWJM process.

Originality/value

This paper deals with a case study, which demonstrates the simplicity of the Taguchi approach in solving multi-objective optimization problems with a few number of experiments.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Click here to view access options
Article
Publication date: 7 October 2021

Amrita Maddamasetty, Kamesh Bodduru, Siva Bevara, Rukmini Srikant Revuru and Sanjay Kumar

Inconel 718 is difficult to machine due to its high toughness and study hardenability. Though the use of cutting fluids alleviates the problem, it is not sustainable. So…

Abstract

Purpose

Inconel 718 is difficult to machine due to its high toughness and study hardenability. Though the use of cutting fluids alleviates the problem, it is not sustainable. So, supply of a small quantity of specialized coolant to the machining zone or use of a solid lubricant is a possible solution. The purpose of the present work is to improve machinability of Inconel718 using graphene nanoplatelets.

Design/methodology/approach

In the present study, graphene is used in the machining of Inconel 718 alloy. Graphene is applied in the following two forms: as a solid lubricant and as an inclusion in cutting fluid. Graphene-based self-lubricating tool and graphene added nanofluids are prepared and applied to turning of Inconel 718 at varying cutting velocities. Performances are compared by measuring cutting forces, cutting temperature, tool wear and surface roughness.

Findings

Graphene, in both forms, showed superior performance compared to dry machining. In total, 0.3 Wt.% graphene added nanofluids showed the lowest cutting tool temperature and flank wear with 44.95% and 83.37% decrease, respectively, compared to dry machining and lowest surface roughness, 0.424 times compared to dry machining at 87 m/min.

Originality/value

Graphene could improve the machinability of Inconel 718 when used in tools as a solid lubricant and also when used as a dispersant in cutting fluid. Graphene used as a dispersant in cutting fluid is found to be more effective.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Click here to view access options
Article
Publication date: 14 March 2016

Xiaohong Lu, Zhenyuan Jia, Hua Wang, Likun Si, Yongyun Liu and Wenyi Wu

– The paper aims to study the wear and breakage characteristics of coated carbide cutting tools through micro-milling slot experiments on superalloy Inconel 718.

Abstract

Purpose

The paper aims to study the wear and breakage characteristics of coated carbide cutting tools through micro-milling slot experiments on superalloy Inconel 718.

Design/methodology/approach

During the micro-milling process, the wear and breakage appearance on the rake face and flank face of the cutting tools, as well as the failure mechanism, have been studied. Furthermore, the wear and breakage characteristics of the micro-cutting tools have been compared with the traditional milling on Inconel 718.

Findings

The main failure forms of the micro tool when micro-milling Inconel 718 were tool tip breakage and coating shed on the rake and flank faces of the cutting tool and micro-crack blade. The main causes of tool wear were synthetic action of adhesive abrasion, diffusion wear and oxidation wear, while the causes of abrasive wear were not obvious.

Practical implications

The changing trend in tool wear during the micro-milling process and the main reasons of the tool wear are studied. The findings will facilitate slowing down the tool wear and prolonging the tool life during micro-milling Inconel718.

Originality/value

The results of this paper can help slow down the tool wear and realize high efficiency, high precision and economical processing of small workpiece or structure of the nickel-based superalloy.

Details

Industrial Lubrication and Tribology, vol. 68 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Click here to view access options
Article
Publication date: 12 August 2021

Amrita M., Rukmini Srikant Revuru, Sreeram Chatti, Sree Satya Bharati Sri Satya Moram, Chandu Byram and Venugopal Rao Soma

Ti6Al4V is a commonly used titanium alloy with several applications in aerospace industry due to its excellent strength to weight ratio. But due to low thermal…

Abstract

Purpose

Ti6Al4V is a commonly used titanium alloy with several applications in aerospace industry due to its excellent strength to weight ratio. But due to low thermal conductivity, it is categorized as “difficult to machine.” Though machinability can be improved with cutting fluids, it is not preferred due to associated problems. This study aims at eliminating the use of cutting fluid and finding an alternate solution to dry machining of Ti6Al4V. AlTiN coated tools provide good heat and oxidation resistance but have low lubricity. In the present work, graphene, which is known for lubricating properties, is added to the tools using five different methods (tool condition) to form graphene self-lubricated cutting tools.

Design/methodology/approach

Graphene-based self-lubricating tools are prepared by using five methods: dip coating (10 dips and 30 dips); drop casting; and filling of micro/macroholes. Performance of these tools is evaluated in terms of cutting forces, surface roughness and tool wear by machining Ti6Al4V and comparing with conventional coated cutting tool.

Findings

Self-lubricating tool with micro holes filled with graphene outperformed other tools and showed maximum decrease of 33.42% in resultant cutting forces, 35% in surface roughness (Ra) and 30% in flank wear compared to conventional cutting tool.

Originality/value

Analysis of variance for all forces show that tool condition and machining time have significant influence on all components of cutting forces and resultant cutting forces.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Click here to view access options
Article
Publication date: 13 July 2020

Ruben Phipon, Ishwer Shivakoti and Ashis Sharma

This paper aims to present the performance of deionized water in electrical discharge machining (EDM) during machining of Inconel 718, copper tool electrode and deionized…

Abstract

Purpose

This paper aims to present the performance of deionized water in electrical discharge machining (EDM) during machining of Inconel 718, copper tool electrode and deionized water as dielectric. Three parameters, namely, pulse-on-time, pulse-off-time and discharge current were taken as control parameters with individual parameter having three levels. Influence of these control parameters on response such as tool wear rate (TWR), material removal rate (MRR) and surface roughness (Ra) is evaluated at various combinations of parametric levels. The results reveal deionized water can be effectively used as a sustainable dielectric and may substitute the hydrocarbon-based dielectric in electrical discharge machining. Also, the control parameters considered show significant impact on the process criteria. Super ranking method was adopted to achieve optimal integration of EDM control factors for obtaining higher MRR, lower TWR and Ra. Further, by applying analysis of variance test, discharge current is established as the dominant parameter during the machining process.

Design/methodology/approach

The experimentation was performed on Inconel 718 in SPARKONIX MOS, 35 A, ZNC EDM using deionized water as dielectric and copper tool as electrode. The dielectric circulatory system was developed without disturbing the existing dielectric circulation system. Figure 1 shows the EDM with newly developed dielectric system. The existing system consists of hydrocarbon-based dielectric, which has a number of drawbacks during the machining such as carbide deposition on the work material, which reduces removal of material from work material; carbon particle adhesion on tool, which results in inefficient discharge between the electrode; and the work material and production of CO and CH4 during machining, which makes the machining environment toxic. To overcome these drawbacks, a sustainable dielectric was adopted in present work. Trial experiments were conducted to select the ranges of parameters, namely, discharge current, pulse-on-time and pulse-off-time. The process characteristics were evaluated at different parametric combinations and the experimentation was designed as per Taguchi L9 orthogonal array. Table 1 shows the properties of Inconel 718. Table 2 shows the parameters considered with its ranges. Table 3 shows the experimental values. The difference of weight of work piece before and after was taken and divided by the machining time used for calculating the MWR. Similarly, the difference of weight of tool material before and after was taken and divided by machining time and is used for calculating TWR. Measurement of surface roughness was done using Talysurf surface roughness meter.

Findings

The experimentation was conducted at different parametric combination on Inconel 718 taking copper as electrode and deionized water as dielectric. The performance criteria was evaluated at considered parametric combination. The result shows that the EDM parameters have significant contribution on the performance criteria and deionized water can be effectively used as dielectric medium in EDM. The use of deionized water as dielectric will improve the process and sustainable green machining can be performed. Super ranking method has been implemented to achieve the best combination of control factors and it is obtained that the combination A1B1C3 (i.e. discharge current = 3 A, pulse-on-time = 1 µs and pulse-off-time = 3 µs) is best combination for obtaining the higher MRR and lower TWR and Ra. The contributing factor in the proposed research work is discharge current. Further, ANOVA was implemented to check the adequacy of these result. It was established that discharge current is the most influential factor followed by pulse-on-time and the least contributing factor as pulse-off-time. The findings of this paper may open the guidelines for researcher for performing research in the field of sustainable machining of difficult to cut materials such as Inconel 718 with sustainable dielectrics in engineering applications.

Originality/value

The paper is original in nature. The findings of this paper may open the guidelines for researcher for performing research in the field of sustainable machining.

Details

World Journal of Engineering, vol. 17 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Click here to view access options
Article
Publication date: 24 August 2012

Gulshan Singh, Juan Ocampo, Harry Millwater and Allan Clauer

The purpose of this paper is to develop an approach to optimize the cycles‐to‐failure of a peened component with respect to laser peening (LP) variables: pressure…

Abstract

Purpose

The purpose of this paper is to develop an approach to optimize the cycles‐to‐failure of a peened component with respect to laser peening (LP) variables: pressure magnitude, mid‐span, and spot size when the component is subject to a variable amplitude loading.

Design/methodology/approach

To optimally design an LP process, an experimentally validated 3D finite element simulation of the LP process, a cycles‐to‐failure estimation capability incorporating residual stress, and a particle swarm optimization strategy were developed and employed to maximize the cycles‐to‐failure of a component of a titanium turbine disk.

Findings

The most critical finding of this research is that a minor difference in the residual stress profile can lead to a large difference in the cycles‐to‐failure. This finding implies that selecting the optimization objective to be the cycles‐to‐failure is a better option as compared to the residual stress profile.

Research limitations/implications

The LP‐induced residual stresses are assumed static and do not change as number of load cycles increase.

Originality/value

The paper develops a framework that relates the LP variables and the cycles‐to‐failure of a peened component. A modified particle swarm optimization approach is developed to optimize the fatigue life of a turbine disk.

Click here to view access options
Article
Publication date: 10 July 2017

Xiaohong Lu, FuRui Wang, Zhenyuan Jia, Likun Si and Yongqiang Weng

This paper aims to predict tool wear and reveal the relationship between feed per tooth and tool wear in micro-milling Inconel 718 process.

Abstract

Purpose

This paper aims to predict tool wear and reveal the relationship between feed per tooth and tool wear in micro-milling Inconel 718 process.

Design/methodology/approach

To study and solve the tool wear problem in micro-milling of Inconel 718 micro components, in this paper, the investigation of micro-milling Inconel 718 process was implemented based on DEFORM finite element simulation, and tool wear depth of micro-milling cutter acted as output.

Findings

Different from the traditional macro milling process, diameter reduction percentage and average flank wear length decreased with the increase of feed per tooth; tool wear depth decreased when the feed per tooth was less than the minimum chip thickness.

Originality/value

At present, research on the prediction of tool wear in micro-milling of Inconel 718 has never been publicly reported. This study is significant to reveal the relationship between cutting parameters (feed per tooth) and tool wear in micro-milling Inconel 718.

Details

Industrial Lubrication and Tribology, vol. 69 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Click here to view access options
Article
Publication date: 11 January 2022

Tushar Sonar, Visvalingam Balasubramanian, Sudersanan Malarvizhi, Thiruvenkatam Venkateswaran and Dhenuvakonda Sivakumar

The primary objective of this investigation is to optimize the constricted arc tungsten inert gas (CA-TIG) welding parameters specifically welding current (WC), arc…

Abstract

Purpose

The primary objective of this investigation is to optimize the constricted arc tungsten inert gas (CA-TIG) welding parameters specifically welding current (WC), arc constriction current (ACC), ACC frequency (ACCF) and CA traverse speed to maximize the tensile properties of thin Inconel 718 sheets (2 mm thick) using a statistical technique of response surface methodology and desirability function for gas turbine engine applications.

Design/methodology/approach

The four factor – five level central composite design (4 × 5 – CCD) matrix pertaining to the minimum number of experiments was chosen in this investigation for designing the experimental matrix. The techniques of numerical and graphical optimization were used to find the optimal conditions of CA-TIG welding parameters.

Findings

The thin sheets of Inconel 718 (2 mm thick) can be welded successfully using CA-TIG welding process without any defects. The joints welded using optimized conditions of CA-TIG welding parameters showed maximum of 99.20%, 94.45% and 73.5% of base metal tensile strength, yield strength and elongation.

Originality/value

The joints made using optimized CA-TIG welding parameters disclosed 99.20% joint efficiency which is comparatively 20%–30% superior than conventional TIG welding process and comparable to costly electron beam welding and laser beam welding processes. The parametric mathematical equations were designed to predict the tensile properties of Inconel 718 joints accurately with a confidence level of 95% and less than 4.5% error. The mathematical relationships were also developed to predict the tensile properties of joints from the grain size (secondary dendritic arm spacing-SDAS) of fusion zone microstructure.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Click here to view access options
Article
Publication date: 24 August 2021

Bukola Joseph Babalola, Ojo Jeremiah Akinribide, Olukayode Samuel Akinwamide and Peter Apata Olubambi

During the operation of nickel-based alloys as blades and discs in turbines, the sliding activity between metallic surfaces is subjected to structural and compositional…

Abstract

Purpose

During the operation of nickel-based alloys as blades and discs in turbines, the sliding activity between metallic surfaces is subjected to structural and compositional changes. In as much as friction and wear are influenced by interacting surfaces, it is necessary to investigate these effects. This study aims to understand better the mechanical and tribological characteristics of Ni-17Cr-10X (X = Mo, W, Ta) ternary alloy systems developed via spark plasma sintering (SPS) technique.

Design/methodology/approach

Nickel-based ternary alloys were fabricated via SPS technique at 50 MPa, 1100 °C, 100 °C/min and a dwell time of 10 mins. Scanning electron microscopy, X-Ray diffraction, energy dispersive X-ray spectroscopy, nanoindentation techniques and tribometer were used to assess the microstructure, phase composition, elemental dispersion, mechanical and tribological characteristics of the sintered nickel-based alloys.

Findings

The outcome of the investigation showed that the Ni-17Cr10Mo alloy exhibited the highest indentation hardness value of 8045 MPa, elastic modulus value of 386 GPa and wear resistance. At the same time, Ni-17Cr10W possessed the least mechanical and wear properties.

Originality/value

It can be shown that the SPS technique is efficient in the development of nickel-based alloys with good elemental distribution and without defects such as segregation of alloying elements, non-metallic inclusions. This is evident from the scanning electron microscopy micrographs.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 17