Search results

1 – 10 of over 16000
Article
Publication date: 25 October 2018

Xiaohong Lu, FuRui Wang, Zhenyuan Jia and Steven Y. Liang

Cutting tool wear is known to affect tool life, surface quality, cutting forces and production time. Micro-milling of difficult-to-cut materials like Inconel 718 leads to…

Abstract

Purpose

Cutting tool wear is known to affect tool life, surface quality, cutting forces and production time. Micro-milling of difficult-to-cut materials like Inconel 718 leads to significant flank wear on the cutting tool. To ensure the respect of final part specifications and to study cutting forces and tool catastrophic failure, flank wear (VB) has to be controlled. This paper aims to achieve flank wear prediction during micro-milling process, which fills the void of the commercial finite element software.

Design/methodology/approach

Based on tool geometry structure and DEFORM finite element simulation, flank wear of the micro tool during micro-milling process is obtained. Finally, experiments of micro-milling Inconel 718 validate the accuracy of the proposed method for predicting flank wear of the micro tool during micro-milling Inconel 718.

Findings

A new prediction method for flank wear of the micro tool during micro-milling Inconel 718 based on the assumption that the wear volume can be assumed as a cone-shaped body is proposed. Compared with the existing experiment techniques for predicting tool wear during micro-milling process, the proposed method is simple to operate and is cost-effective. The existing finite element investigations on micro tool wear prediction mainly focus on micro tool axial wear depth, which affects size accuracy of machined workpiece seriously.

Originality/value

The research can provide significant knowledge on the usage of finite element method in predicting tool wear condition during micro-milling process. In addition, the method presented in this paper can provide support for studying the effect of tool flank wear on cutting forces during micro-milling process.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 July 2017

Xiaohong Lu, FuRui Wang, Zhenyuan Jia, Likun Si and Yongqiang Weng

This paper aims to predict tool wear and reveal the relationship between feed per tooth and tool wear in micro-milling Inconel 718 process.

Abstract

Purpose

This paper aims to predict tool wear and reveal the relationship between feed per tooth and tool wear in micro-milling Inconel 718 process.

Design/methodology/approach

To study and solve the tool wear problem in micro-milling of Inconel 718 micro components, in this paper, the investigation of micro-milling Inconel 718 process was implemented based on DEFORM finite element simulation, and tool wear depth of micro-milling cutter acted as output.

Findings

Different from the traditional macro milling process, diameter reduction percentage and average flank wear length decreased with the increase of feed per tooth; tool wear depth decreased when the feed per tooth was less than the minimum chip thickness.

Originality/value

At present, research on the prediction of tool wear in micro-milling of Inconel 718 has never been publicly reported. This study is significant to reveal the relationship between cutting parameters (feed per tooth) and tool wear in micro-milling Inconel 718.

Details

Industrial Lubrication and Tribology, vol. 69 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 March 2016

Xinli Tian, Long Wang, Wanglong Wang, Yongdong Li and Kaiwen Ji

The cutting and extruding processing technology for ceramics based on the edge-chipping effect is a new contact removal machining method for hard, brittle materials such as…

Abstract

Purpose

The cutting and extruding processing technology for ceramics based on the edge-chipping effect is a new contact removal machining method for hard, brittle materials such as engineering ceramics. This paper aims to provide an important reference to understand the tool wear mechanism and the wear law of this new processing technology.

Design/methodology/approach

The real-time temperature monitoring and the observation of micro-morphology are used to analyse the wear characteristics of the tool face. In addition, the research focuses on the influence of three processing parameters (axial feed rate, thickness of flange and depth of groove) on characteristics including tool wear.

Findings

The temperature variation shows that the new processing technology improves the tool temperatures condition. The tool is worn mainly by mechanical friction including abrasive wear, and the flank face also suffers the sustained scratching of residual materials on the rough machining surface. With increased feed rate, the wear of the rear face of the major flank initially decreased and then increased. As the depth of the retained flange increases, the wear became worse. The wear initially decreased and then increased with increasing depth of groove.

Research limitations/implications

Study on the new processing technology is still in its early stages. Therefore, researchers are encouraged to test the proposed propositions further.

Practical implications

The machining process itself destroys materials, albeit a controllable manner: based on this principle, the authors proposed a new machining technology based on cracks driven by edge chipping. In this way, the surface of such ceramics is removed. Therefore, the research provides a new method for reducing processing costs and promoting the extensive application of engineering ceramic materials.

Originality/value

The cutting and extruding processing technology based on cracks driven by edge-chipping effect makes full use of the stress concentration effect caused by prefabricated defects, and the edge-chipping effect which occurs during machining-induced crack propagation. The wear mechanism and law of its tool is unique than other machining ways. This paper provides an important reference to understand the tool wear mechanism and the machining mechanism of this new processing technology. With the application of this study, the ceramics could be removed with less energy consumption and the tools with the hardness of lower than its own one. Therefore, it could not only reduce the processing costs but also promote the extensive applications of engineering ceramic materials.

Details

Industrial Lubrication and Tribology, vol. 68 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 November 2016

Lijuan Zheng, Chengyong Wang, Xin Zhang, Xin Huang, Yuexian Song, Kefeng Wang and Lunqiang Zhang

Micro-holes are drilled and plated in flexible printed circuit boards (FPCs) for connecting circuits from different layers. More holes, with diameters smaller than 0.3 mm, are…

699

Abstract

Purpose

Micro-holes are drilled and plated in flexible printed circuit boards (FPCs) for connecting circuits from different layers. More holes, with diameters smaller than 0.3 mm, are required to be drilled in smaller areas with flexible circuits’ miniaturization. The micro-hole quality of micro-drilling is one of the biggest issues of the flexible circuit manufacturers’ production. However, it is not easy to control the quality of micro-holes. The purpose of this study was to conduct research on the tool wear characteristics of FPC drilling process and its influence on micro-hole quality to improve the micro-hole quality of FPC.

Design/methodology/approach

The tool-wear characteristics of micro-drills after FPC drilling were observed. The influence of spindle speed, feed rate, number of drilled holes and entry board materials on tool-wear was analyzed. The hole qualities of FPC micro-drilling were measured and observed. The relationship between tool-wear and hole quality was analyzed.

Findings

The result showed that the tool-wear characteristics of FPC micro-drilling was similar to the tool-wear characteristics of rigid printed circuit board (RPC) micro-drilling. Abrasive wear occurred on both the main cutting edges and the chisel edges of micro-drills, even though there was no glass fiber reinforcing the cloth inside FPC. Resin adhesion was observed on the chisel edge. The influence of feed and number of drilled holes on tool-wear was significant. Tool-wear significantly influences the hole quality of FPC. Tool-wear will largely decrease the hole position accuracy of FPC micro-holes. Tool-wear will increase the thickness of PI nail heads and the height of exit burrs. Fracture was the main difference between tool wear of FPC and RPC micro-drilling. Resin adhesion of RPC was much more severe than FPC micro-drilling. Increasing the spindle speed properly may improve tool life and hole quality.

Originality/value

The technology and manufacturing of FPC has been little investigated. Research on micro-drilling FPC and research data is lacking so far. The micro-hole quality directly affects the reliability of FPC. Thus, improving the micro-hole quality of FPC is very important.

Details

Circuit World, vol. 42 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 18 November 2013

Xiaohu Zheng, Dapeng Dong, Lixin Huang, Xibin Wang and Ming Chen

– The paper aims to investigate tool wear mechanism and tool geometry optimization of drilling PCB fixture hole.

Abstract

Purpose

The paper aims to investigate tool wear mechanism and tool geometry optimization of drilling PCB fixture hole.

Design/methodology/approach

An experimental study was carried out to investigate the chip formation and tool wear mechanism of drilling PCB fixture holes. Two types of drill with different types of chip-split groove were used in this study. The performances of these two types of drill bots were evaluated by tool wear and the shapes of chips.

Findings

The chips of drilling fixture holes contain aluminum chips from the cover board, copper chips from the copper foil, discontinuous glass fiber and resin from the CFRP. Feed rate and drilling speed have a great influence on the chip morphology. Abrasive wear of the drill lip is the main reason of the fixture drill bit in drilling PCB, and micro-chipping is observed on the tool nose and chisel edge. The influence of distance between the chip-split groove and drill point center on the axial force and torque is not obvious.

Research limitations/implications

In this paper, hole wall roughness and drilling temperature were not analyzed in the optimization of drilling parameters. The future research work should consider them.

Originality/value

This paper investigated the mechanism of burr formation and tool wear in drilling of PCB fixture holes. Tool geometry was optimized by adding chip-split grooves.

Details

Circuit World, vol. 39 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 4 October 2019

Shalina Sheik Muhamad, Jaharah A. Ghani, Che Hassan Che Haron and Hafizal Yazid

The purpose of this study is to investigate wear mechanisms of a multi-layered TiAlN/AlCrN-coated carbide tool during the milling of AISI 4340 steel under cryogenic machining.

Abstract

Purpose

The purpose of this study is to investigate wear mechanisms of a multi-layered TiAlN/AlCrN-coated carbide tool during the milling of AISI 4340 steel under cryogenic machining.

Design/methodology/approach

The wear progression was measured using a toolmaker microscope and an optical microscope. Later, a field emission scanning electron microscope and energy-dispersive X-ray analysis were used to investigate the wear mechanisms in detail.

Findings

A comprehensive analysis revealed that the main causes of tool wear mechanisms were abrasion and adhesion wear on the flank face.

Originality/value

The investigations presented in this paper may be used by the machining industry to prolong the tool life at higher cutting speed by the application of liquid nitrogen.

Details

Industrial Lubrication and Tribology, vol. 72 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 January 2022

Ahsana Aqilah Ahmad, Jaharah A. Ghani and Che Hassan Che Haron

The purpose of this paper is to study the cutting performance of high-speed regime end milling of AISI 4340 by investigating the tool life and wear mechanism of steel using the…

Abstract

Purpose

The purpose of this paper is to study the cutting performance of high-speed regime end milling of AISI 4340 by investigating the tool life and wear mechanism of steel using the minimum quantity lubrication (MQL) technique to deliver the cutting fluid.

Design/methodology/approach

The experiments were designed using Taguchi L9 orthogonal array with the parameters chosen: cutting speed (between 300 and 400 m/min), feed rate (between 0.15 and 0.3 mm/tooth), axial depth of cut (between 0.5 and 0.7 mm) and radial depth of cut (between 0.3 and 0.7 mm). Toolmaker microscope, optical microscope and Hitachi SU3500 Variable Pressure Scanning Electron Microscope used to measure tool wear progression and wear mechanism.

Findings

Cutting speed 65.36%, radial depth of cut 24.06% and feed rate 6.28% are the cutting parameters that contribute the most to the rate of tool life. The study of the tool wear mechanism revealed that the oxide layer was observed during lower and high cutting speeds. The former provides a cushion of the protective layer while later reduce the surface hardness of the coated tool

Originality/value

A high-speed regime is usually carried out in dry conditions which can shorten the tool life and accelerate the tool wear. Thus, this research is important as it investigates how the use of MQL and cutting parameters can prolong the usage of tool life and at the same time to achieve a sustainable manufacturing process.

Details

Industrial Lubrication and Tribology, vol. 74 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 March 2016

Xiaohong Lu, Zhenyuan Jia, Hua Wang, Likun Si, Yongyun Liu and Wenyi Wu

– The paper aims to study the wear and breakage characteristics of coated carbide cutting tools through micro-milling slot experiments on superalloy Inconel 718.

1108

Abstract

Purpose

The paper aims to study the wear and breakage characteristics of coated carbide cutting tools through micro-milling slot experiments on superalloy Inconel 718.

Design/methodology/approach

During the micro-milling process, the wear and breakage appearance on the rake face and flank face of the cutting tools, as well as the failure mechanism, have been studied. Furthermore, the wear and breakage characteristics of the micro-cutting tools have been compared with the traditional milling on Inconel 718.

Findings

The main failure forms of the micro tool when micro-milling Inconel 718 were tool tip breakage and coating shed on the rake and flank faces of the cutting tool and micro-crack blade. The main causes of tool wear were synthetic action of adhesive abrasion, diffusion wear and oxidation wear, while the causes of abrasive wear were not obvious.

Practical implications

The changing trend in tool wear during the micro-milling process and the main reasons of the tool wear are studied. The findings will facilitate slowing down the tool wear and prolonging the tool life during micro-milling Inconel718.

Originality/value

The results of this paper can help slow down the tool wear and realize high efficiency, high precision and economical processing of small workpiece or structure of the nickel-based superalloy.

Details

Industrial Lubrication and Tribology, vol. 68 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 May 2015

Tracie Prater, Brian Gibson, Chase Cox, George E. Cook, Al Strauss and William Longhurst

The purpose of this paper is to evaluate the tool experiences using torque during welding as a means of in-process sensing for tool wear. Metal matrix composites (MMCs) are…

Abstract

Purpose

The purpose of this paper is to evaluate the tool experiences using torque during welding as a means of in-process sensing for tool wear. Metal matrix composites (MMCs) are materials with immense potential for aerospace structural applications. The major barrier to implementation of these materials is manufacturability, specifically joining MMCs to themselves or other materials using fusion welding. Friction stir welding (FSW) is an excellent candidate process for joining MMCs, as it occurs below the melting point of the material, thus precluding the formation of degradative intermetallics’ phases present in fusion welded joints. The limiting factor for use of FSW in this application is wear of the tool. The abrasive particles which give MMCs their enhanced properties progressively erode the tool features that facilitate vertical mixing and consolidation of material during welding, resulting in joints with porosity. While wear can be mitigated by careful selection of process parameters and/or the use of harder tool materials, these approaches have significant complexities and limitations.

Design/methodology/approach

This study evaluates using the torque the tool experiences during welding as a means of in-process sensing for tool wear. Process signals were collected during linear FSW of Al 359/SiC/20p and correlated with wear of the tool probe. The results of these experiments demonstrate that there is a correlation between torque and wear, and the torque process signal can potentially be exploited to monitor and control tool wear during welding.

Findings

Radial deterioration of the probe during joining of MMCs by FSW corresponds to a decrease in the torque experienced by the tool. Experimentally observed relationship between torque and wear opens the door to the development of in-process sensing, as the decay in the torque signal can be correlated to the amount of volume lost by the probe. The decay function for tool wear in FSW of a particular MMC can be determined experimentally using the methodology presented here. The decay of the torque signal as the tool loses volume presents a potential method for control of the wear process.

Originality/value

This work has near-term commercial applications, as a means of monitoring and controlling wear in process could serve to grow commercial use of MMCs and expand the design space for these materials beyond net or near-net-shape parts.

Details

Industrial Robot: An International Journal, vol. 42 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 April 2013

Emel Kuram, Babur Ozcelik, Bilgin Tolga Simsek and Erhan Demirbas

The purpose of this paper is to investigate the performances of vegetable based cutting fluids by comparing tool life, surface roughness and cutting force during end milling of…

Abstract

Purpose

The purpose of this paper is to investigate the performances of vegetable based cutting fluids by comparing tool life, surface roughness and cutting force during end milling of AISI 304 stainless steel. In the experiments, three different vegetable based cutting fluids developed from sunflower and canola oils (SCF‐II with 8% extreme pressure (EP), CCF‐II without EP and CCF‐II with 8% EP) and a commercial type of semi‐synthetic cutting fluid were used. Cutting fluid was applied to the cutting zone via two nozzles.

Design/methodology/approach

Effects of different cutting speeds (100, 150 and 200 m/min) and different feed rates (0.2, 0.25 and 0.3 mm/rev) on tool life, surface roughness and cutting force in milling of AISI 304 stainless steel were investigated. Depth of cut and step over were kept constant as 0.3 mm and 10 mm at both conditions, respectively.

Findings

Results indicated that CCF‐II with 8% EP cutting fluid showed better performance than the others.

Originality/value

In this study, effect of extreme pressure additive on milling performance was investigated.

Details

Industrial Lubrication and Tribology, vol. 65 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 16000