Search results

1 – 10 of 168
Article
Publication date: 30 April 2024

Farooq H. Ali, Mushtaq F. Almensoury, Atheer Saad Hashim, Qusay Rasheed Al-Amir, Hameed K. Hamzah and M. Hatami

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Abstract

Purpose

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Design/methodology/approach

The finite element method–based Galerkin approach is applied to solve numerically the set of governing equations with appropriate boundary conditions.

Findings

The effects of different range parameters, such as Darcy number (10–3 = Da = 10–1), Rayleigh number (103 = Ra = 106), nanoparticle volume fraction (0 = ϑ = 0.06) and eccentricity (−0.3 = e = 0.1) on the fluid flow represent by stream function and heat transfer represent by temperature distribution, local and average Nusselt numbers.

Research limitations/implications

A comparison between oval shape and concentric circular concentric cylinder was investigated.

Originality/value

In the current numerical study, heat transfer by natural convection was identified inside the new design of egg-shaped cavity as a result of the presence of a circular inside it supported by a porous medium filled with a nanofluid. After reviewing previous studies and considering the importance of heat transfer by free convection inside tubes for many applications, to the best of the authors’ knowledge, the current work is the first study that deals with a study and comparison between the common shape (concentric circular tubes) and the new shape (egg-shaped cavity).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 March 2023

Mostafa Esmaeili and Amir Hossein Rabiee

This study aims to numerically explore the heat transfer characteristics in turbulent two-degree-of-freedom vortex-induced vibrations (VIVs) of three elastically mounted circular…

Abstract

Purpose

This study aims to numerically explore the heat transfer characteristics in turbulent two-degree-of-freedom vortex-induced vibrations (VIVs) of three elastically mounted circular cylinders.

Design/methodology/approach

The cylinders are at the vertices of an isosceles triangle with a base and height that are the same. The finite volume technique is used to calculate the Reynolds-averaged governing equations, whereas the structural dynamics equations are solved using the explicit integration method. Simulations are performed for three different configurations, constant mass ratio and natural frequency, as well as distinct reduced velocity values.

Findings

As a numerical challenge, the super upper branch observed in the experiment is well-captured by the current numerical simulations. According to the computation findings, the vortex-shedding around the cylinders increases flow mixing and turbulence, hence enhancing heat transfer. At most reduced velocities, the Nusselt number of downstream cylinders is greater than that of upstream cylinders due to the impact of wake-induced vibration, and the maximum heat transfer improvement of these cylinders is 21% (at Ur = 16), 23% (at Ur = 5) and 20% (at Ur = 15) in the first, second and third configurations, respectively.

Originality/value

The main novelty of this study is inspecting the thermal behavior and turbulent flow–induced vibration of three circular cylinders in the triangular arrangement.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 May 2023

Xiaoyu Liu, Suchuan Dong and Zhi Xie

This paper aims to present an unconditionally energy-stable scheme for approximating the convective heat transfer equation.

Abstract

Purpose

This paper aims to present an unconditionally energy-stable scheme for approximating the convective heat transfer equation.

Design/methodology/approach

The scheme stems from the generalized positive auxiliary variable (gPAV) idea and exploits a special treatment for the convection term. The original convection term is replaced by its linear approximation plus a correction term, which is under the control of an auxiliary variable. The scheme entails the computation of two temperature fields within each time step, and the linear algebraic system resulting from the discretization involves a coefficient matrix that is updated periodically. This auxiliary variable is given by a well-defined explicit formula that guarantees the positivity of its computed value.

Findings

Compared with the semi-implicit scheme and the gPAV-based scheme without the treatment on the convection term, the current scheme can provide an expanded accuracy range and achieve more accurate simulations at large (or fairly large) time step sizes. Extensive numerical experiments have been presented to demonstrate the accuracy and stability performance of the scheme developed herein.

Originality/value

This study shows the unconditional discrete energy stability property of the current scheme, irrespective of the time step sizes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 January 2024

Fateh Mebarek-Oudina, Ines Chabani, Hanumesh Vaidya and Abdul Aziz I. Ismail

This paper aims to present a numerical study that investigates the flow of MgO-Al2O3/water hybrid nanofluid inside a porous elliptical-shaped cavity, in which we aim to examine…

Abstract

Purpose

This paper aims to present a numerical study that investigates the flow of MgO-Al2O3/water hybrid nanofluid inside a porous elliptical-shaped cavity, in which we aim to examine the performance of this thermal system when exposed to a magnetic field via heat transfer features and entropy generation.

Design/methodology/approach

The configuration consists of the hybrid nanofluid out layered by a cold ellipse while it surrounds a non-square heated obstacle; the thermal structure is under the influence of a horizontal magnetic field. This problem is implemented in COMSOL multiphysics, which solves the related equations described by the “Darcy-Forchheimer-Brinkman” model through the finite element method.

Findings

The results illustrated as streamlines, isotherms and average Nusselt number, along with the entropy production, are given as functions of: the volume fraction, and shape factor to assess the behaviour of the properties of the nanoparticles. Darcy number and porosity to designate the impact of the porous features of the enclosure, and finally the strength of the magnetic induction described as Hartmann number. The outcomes show the increased pattern of the thermal and dynamical behaviour of the hybrid nanofluid when augmenting the concentration, shape factor, porosity and Darcy number; however, it also engenders increased formations of irreversibilities in the system that were revealed to enhance with the permeability and the great properties of the nanofluid. Nevertheless, this thermal enhanced pattern is shown to degrade with strong Hartmann values, which also reduced both thermal and viscous entropies. Therefore, it is advised to minimize the magnetic influence to promote better heat exchange.

Originality/value

The investigation of irreversibilities in nanofluids heat transfer is an important topic of research with practical implications for the design and optimization of heat transfer systems. The study’s findings can help improve the performance and efficiency of these systems, as well as contribute to the development of sustainable energy technologies. The study also offers an intriguing approach that evaluates entropy growth in this unusual configuration with several parameters, which has the potential to transform our understanding of complicated fluid dynamics and thermodynamic processes, and at the end obtain the best thermal configuration possible.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 September 2023

Thameem Hayath Basha, Sivaraj Ramachandran and Bongsoo Jang

The need for precise synthesis of customized designs has resulted in the development of advanced coating processes for modern nanomaterials. Achieving accuracy in these processes…

Abstract

Purpose

The need for precise synthesis of customized designs has resulted in the development of advanced coating processes for modern nanomaterials. Achieving accuracy in these processes requires a deep understanding of thermophysical behavior, rheology and complex chemical reactions. The manufacturing flow processes for these coatings are intricate and involve heat and mass transfer phenomena. Magnetic nanoparticles are being used to create intelligent coatings that can be externally manipulated, making them highly desirable. In this study, a Keller box calculation is used to investigate the flow of a coating nanofluid containing a viscoelastic polymer over a circular cylinder.

Design/methodology/approach

The rheology of the coating polymer nanofluid is described using the viscoelastic model, while the effects of nanoscale are accounted for by using Buongiorno’s two-component model. The nonlinear PDEs are transformed into dimensionless PDEs via a nonsimilar transformation. The dimensionless PDEs are then solved using the Keller box method.

Findings

The transport phenomena are analyzed through a comprehensive parametric study that investigates the effects of various emerging parameters, including thermal radiation, Biot number, Eckert number, Brownian motion, magnetic field and thermophoresis. The results of the numerical analysis, such as the physical variables and flow field, are presented graphically. The momentum boundary layer thickness of the viscoelastic polymer nanofluid decreases as fluid parameter increases. An increase in mixed convection parameter leads to a rise in the Nusselt number. The enhancement of the Brinkman number and Biot number results in an increase in the total entropy generation of the viscoelastic polymer nanofluid.

Practical implications

Intelligent materials rely heavily on the critical characteristic of viscoelasticity, which displays both viscous and elastic effects. Viscoelastic models provide a comprehensive framework for capturing a range of polymeric characteristics, such as stress relaxation, retardation, stretching and molecular reorientation. Consequently, they are a valuable tool in smart coating technologies, as well as in various applications like supercapacitor electrodes, solar collector receivers and power generation. This study has practical applications in the field of coating engineering components that use smart magnetic nanofluids. The results of this research can be used to analyze the dimensions of velocity profiles, heat and mass transfer, which are important factors in coating engineering. The study is a valuable contribution to the literature because it takes into account Joule heating, nonlinear convection and viscous dissipation effects, which have a significant impact on the thermofluid transport characteristics of the coating.

Originality/value

The momentum boundary layer thickness of the viscoelastic polymer nanofluid decreases as the fluid parameter increases. An increase in the mixed convection parameter leads to a rise in the Nusselt number. The enhancement of the Brinkman number and Biot number results in an increase in the total entropy generation of the viscoelastic polymer nanofluid. Increasing the strength of the magnetic field promotes an increase in the density of the streamlines. An increase in the mixed convection parameter results in a decrease in the isotherms and isoconcentration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2023

Nirmalendu Biswas, Dipak Kumar Mandal, Nirmal K. Manna, Rama S.R. Gorla and Ali J. Chamkha

This study aims to investigate the impact of different heater geometries (flat, rectangular, semi-elliptical and triangular) on hybrid nanofluidic (Cu–Al2O3–H2O) convection in…

Abstract

Purpose

This study aims to investigate the impact of different heater geometries (flat, rectangular, semi-elliptical and triangular) on hybrid nanofluidic (Cu–Al2O3–H2O) convection in novel umbrella-shaped porous thermal systems. The system is top-cooled, and the identical heater surfaces are provided centrally at the bottom to identify the most enhanced configuration.

Design/methodology/approach

The thermal-fluid flow analysis is performed using a finite volume-based indigenous code, solving the nonlinear coupled transport equations with the Darcy number (10–5 ≤ Da ≤ 10–1), modified Rayleigh number (10 ≤ Ram ≤ 104) and Hartmann number (0 ≤ Ha ≤ 70) as the dimensionless operating parameters. The semi-implicit method for pressure linked equations algorithm is used to solve the discretized transport equations over staggered nonuniform meshes.

Findings

The study demonstrates that altering the heater surface geometry improves heat transfer by up to 224% compared with a flat surface configuration. The triangular-shaped heating surface is the most effective in enhancing both heat transfer and flow strength. In general, flow strength and heat transfer increase with rising Ram and decrease with increasing Da and Ha. The study also proposes a mathematical correlation to predict thermal characteristics by integrating all geometric and flow control variables.

Research limitations/implications

The present concept can be extended to further explore thermal performance with different curvature effects, orientations, boundary conditions, etc., numerically or experimentally.

Practical implications

The present geometry configurations can be applied in various engineering applications such as heat exchangers, crystallization, micro-electronic devices, energy storage systems, mixing processes, food processing and different biomedical systems (blood flow control, cancer treatment, medical equipment, targeted drug delivery, etc.).

Originality/value

This investigation contributes by exploring the effect of various geometric shapes of the heated bottom on the hydromagnetic convection of Cu–Al2O3–H2O hybrid nanofluid flow in a complex umbrella-shaped porous thermal system involving curved surfaces and multiphysical conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 July 2023

Kiran Kumar K, Kotresha Banjara and Kishan Naik

This study aims to present the numerical analysis of exergy transfer and irreversibility through the discrete filling of high-porosity aluminum metal foams inside the horizontal…

Abstract

Purpose

This study aims to present the numerical analysis of exergy transfer and irreversibility through the discrete filling of high-porosity aluminum metal foams inside the horizontal pipe.

Design/methodology/approach

In this study, the heater is embedded on the pipe’s circumference and is assigned with known heat input. To enhance the heat transfer, metal foam of 10 pores per inch with porosity 0.95 is filled into the pipe. In filling, two kinds of arrangements are made, in the first arrangement, the metal foam is filled adjacent to the inner wall of the pipe [Model (1)–(3)], and in the second arrangement, the foam is located at the center of the pipe [Models (4)–(6)]. So, six different models are examined in this research for a fluid velocity ranging from 0.7 to7 m/s under turbulent flow conditions. Darcy Extended Forchheimer is combined with local thermal non-equilibrium models for forecasting the flow and heat transfer features via metal foams.

Findings

The numerical methodology implemented in this study is confirmed by comparing the outcomes with the experimental outcomes accessible in the literature and found a fairly good agreement between them. The application of the second law of thermodynamics via metal foams is the novelty of current investigation. The evaluation of thermodynamic performance includes the parameters such as mean exergy-based Nusselt number (Nue), rate of irreversibility, irreversibility distribution ratio (IDR), merit function (MF) and non-dimensional exergy destruction (I*). In all the phases, Models (1)–(3) exhibit better performance than Models (4)–(6).

Practical implications

The present study helps to enhance the heat transfer performance with the introduction of metal foams and reveals the importance of available energy (exergy) in the system which helps in arriving at optimum design criteria for the thermal system.

Originality/value

The uniqueness of this study is to analyze the impact of discrete metal foam filling on exergy and irreversibility in a pipe under turbulent flow conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 July 2023

Alin V. Roşca, Natalia C. Roşca, Ioan Pop and Mikhail A. Sheremet

This paper aims to study numerically the steady natural convective heat transfer of a hybrid nanosuspension (Ag-MgO/H2O) within a partially heated/cooled trapezoidal region with…

89

Abstract

Purpose

This paper aims to study numerically the steady natural convective heat transfer of a hybrid nanosuspension (Ag-MgO/H2O) within a partially heated/cooled trapezoidal region with linear temperature profiles at inclined walls under an effect of uniform Lorentz force. This investigation is useful for researchers studying in the area of cavity flows to know features of the flow structures and nature of hybrid nanofluid characteristics. In addition, a detailed entropy generation analysis has been performed to highlight possible regimes with minimal entropy generation rates.

Design/methodology/approach

The governing equations formulated using the Oberbeck–Boussinesq approach and single-phase nanoliquid model are transformed to a non-dimensional form by using non-dimensional variables. The obtained equations with appropriate boundary conditions are resolved by the finite difference technique. The developed code has been validated comprehensively. Analysis has been performed for a wide range of governing parameters, including Rayleigh number (Ra = 105), Prandtl number (Pr = 6.82), Hartmann number (Ha = 0–100), magnetic field inclination angle (φ = 0–?/2) and nanoparticles volume fraction (φhnf = 0 and 2%).

Findings

It has been shown that inclined magnetic field can be used to manage the energy transport performance. An inclusion of nanoparticles without Lorentz force influence allows forming more stable convective regime with descending heat plume in the central zone, while such a regime was performed for clear fluid only for moderate and high Hartmann numbers. Moreover, the average overall entropy generation can be decreased with a growth of the Hartmann number, while an addition of hybrid nanoparticles allows reducing this parameter for Ha = 30 and 50. The average Nusselt number can be increased with a growth of the nanoparticles concentration for low values of the magnetic field intensity.

Originality/value

Governing equations written using the conservation laws and dimensionless non-primitive variables have been resolved by the finite difference approach. The created numerical code has been verified by applying the grid independence test and computational outcomes of other researchers. The comprehensive analysis for various key parameters has been performed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 June 2023

Pengfei Yuan, Baiyan He and Lianhong Zhang

Due to the structural layout, mining process, and working environment, curved chains such as horizontal and vertical bends inevitably exist in the armoured face conveyor (AFC)…

Abstract

Purpose

Due to the structural layout, mining process, and working environment, curved chains such as horizontal and vertical bends inevitably exist in the armoured face conveyor (AFC). With the increasing power, conveying capacity, and distance of the AFC, the dynamic influence of these curved chains should be highly emphasized. This paper establishes a dynamic model of the AFC by multi-body system theory and finite segment method, in which the curved chains can be fully considered.

Design/methodology/approach

The scraper chains are firstly grouped into the straight, horizontal bend, vertical convex and concave bend sections. Each bend section running in a circle is simplified as an ideal arc. Through solving its differential equilibrium equation and using Newton's second law, its running resistance is derived. Then the grouped chains are discretized into finite control elements according to the Kelvin model, and the governing equation of each control element is established. The dynamic model of the AFC is obtained by assembling these equations, and the corresponding simulation model is developed by using MATLAB/Simulink.

Findings

Case studies with real scenarios are provided, and simulations are carried out. The results show that the running resistance contributed by the curved chains is larger than the traditional empirical value.

Originality/value

The work in this paper helps the dynamic performance design of AFC, with a deep understanding of the curved chains.

Details

Engineering Computations, vol. 40 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 June 2023

Nepal Chandra Roy and Sherajum Monira

The purpose of this study is to investigate the natural convection characteristics of a reacting hybrid nanofluid in an open porous cavity bounded by vertical wavy walls subject…

Abstract

Purpose

The purpose of this study is to investigate the natural convection characteristics of a reacting hybrid nanofluid in an open porous cavity bounded by vertical wavy walls subject to an inclined magnetic field.

Design/methodology/approach

The physical domain of the problem is constructed using coordinate transformations, and the equations are transformed accordingly. The resulting equations are then solved using finite difference method. Numerical results for the streamlines, isotherms and isoconcentration are illustrated with varying relevant parameters.

Findings

Whatever the values of parameters, streamlines have two counter-rotating cells, and their intensities are the highest near the open end. Moreover, the maximum temperature and the minimum concentration are obtained in close proximity to the open end. The strength of streamlines is increased with increasing Rayleigh number, Frank-Kamenetskii number and Darcy number, whereas it is decreased with the increment of volume fractions of nanoparticles.

Research limitations/implications

The limitations of this study are that the model is suitable for thermal equilibrium cases and constant thermo-physical properties, while the results can predict two-dimensional flow behaviors.

Originality/value

To the best of the authors’ knowledge, there is no study on the natural convection induced by a chemical reaction in an open cavity bounded by vertical wavy walls. The findings might be used to gather knowledge about the flow, energy and reactant distributions in an open space containing a chemical reaction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 168