Search results

1 – 10 of over 28000
Article
Publication date: 1 April 2006

M. Grujicic, B. Pandurangan and B. A. Cheeseman

A nonlinear‐dynamics transient computational analysis of the explosion phenomena associated with detonation of 100g of C4 high‐energy explosive buried at different depths in sand…

Abstract

A nonlinear‐dynamics transient computational analysis of the explosion phenomena associated with detonation of 100g of C4 high‐energy explosive buried at different depths in sand is carried out using the AUTODYN computer program. The results obtained are compared with the corresponding experimental results obtained in Ref. [1]. To validate the computational procedure and the materials constitutive models used in the present work, a number of detonation‐related phenomena such as the temporal evolutions of the shape and size of the over‐burden sand bubbles and of the detonation‐products gas clouds, the temporal evolutions of the side‐on pressures in the sand and in air, etc. are determined and compared with their experimental counterparts. The results obtained suggest that the agreement between the computational and the experimental results is reasonable at short postdetonation times. At longer post‐detonation times, on the other hand, the agreement is less satisfactory primarily with respect to the size and shape of the sand crater, i.e. with respect to the volume of the sand ejected during explosion. It is argued that the observed discrepancy is, at least partly, the result of an inadequacy of the generic materials constitutive model for the sand which does not explicitly include the important effects of the sand particle size and the particle size distribution, as well as the effects of moisture‐level controlled inter‐particle friction and cohesion. It is further shown that by a relatively small adjustment of the present materials model for sand to include the potential effect of moisture on inter‐particle friction can yield a significantly improved agreement between the computed and the experimentally determined sand crater shapes and sizes.

Details

Multidiscipline Modeling in Materials and Structures, vol. 2 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 February 2015

M. Grujicic, V. Chenna, R. Yavari, R. Galgalikar, J.S. Snipes and S. Ramaswami

To make wind energy (one of the alternative-energy production technologies) economical, wind-turbines (convertors of wind energy into electrical energy) are required to operate…

Abstract

Purpose

To make wind energy (one of the alternative-energy production technologies) economical, wind-turbines (convertors of wind energy into electrical energy) are required to operate, with only regular maintenance, for at least 20 years. However, some key wind-turbine components (especially the gear-box) often require significant repair or replacement after only three to five years in service. This causes an increase in both the wind-energy cost and the cost of ownership of the wind turbine. The paper aims to discuss these issues.

Design/methodology/approach

To overcome this problem, root causes of the gear-box premature failure are currently being investigated using mainly laboratory and field-test experimental approaches. As demonstrated in many industrial sectors (e.g. automotive, aerospace, etc.) advanced computational engineering methods and tools cannot only complement these experimental approaches but also provide additional insight into the problem at hand (and do so with a substantially shorter turn-around time). The present work demonstrates the use of a multi-length-scale computational approach which couples large-scale wind/rotor interactions with a gear-box dynamic response, enabling accurate determination of kinematics and kinetics within the gear-box bearings (the components most often responsible for the gear-box premature failure) and ultimately the structural response (including damage and failure) of the roller-bearing components (e.g. inner raceways).

Findings

It has been demonstrated that through the application of this approach, one can predict the expected life of the most failure-prone horizontal axis wind turbine gear-box bearing elements.

Originality/value

To the authors’ knowledge, the present work is the first multi-length-scale study of bearing failure in wind-turbines.

Details

International Journal of Structural Integrity, vol. 6 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 13 June 2016

M. Grujicic, R. Yavari, J. S. Snipes and S. Ramaswami

The purpose of this paper is computer-aided engineering analysis of the recently proposed side-vent-channel concept for mitigation of the blast-loads resulting from a…

Abstract

Purpose

The purpose of this paper is computer-aided engineering analysis of the recently proposed side-vent-channel concept for mitigation of the blast-loads resulting from a shallow-buried mine detonated underneath a light tactical vehicle. The concept involves the use of side-vent-channels attached to the V-shaped vehicle underbody, and was motivated by the concepts and principles of operation of the so-called “pulse detonation” rocket engines. By proper shaping of the V-hull and side-vent-channels, venting of supersonically expanding gaseous detonation products is promoted in order to generate a downward thrust on the targeted vehicle.

Design/methodology/approach

The utility and the blast-mitigation capacity of this concept were examined in the prior work using computational methods and tools which suffered from some deficiencies related to the proper representation of the mine, soil, and vehicle materials, as well as air/gaseous detonation products. In the present work, an attempt is made to remove some of these deficiencies, and to carry out a bi-objective engineering-optimization analysis of the V-hull and side-vent-channel shape and size for maximum reduction of the momentum transferred to and the maximum acceleration acquired by the targeted vehicle.

Findings

Due to the conflicting nature of the two objectives, a set of the Pareto designs was identified, which provide the optimal levels of the trade-off between the two objectives.

Originality/value

To the authors’ knowledge, the present work is the first public-domain report of the side-vent-channel blast-mitigation concept.

Article
Publication date: 4 November 2014

Mica Grujicic, Ramin Yavari, Jennifer Snipes, S. Ramaswami and Roshdy Barsoum

The purpose of this paper is to study the mechanical response of polyurea, soda-lime glass (glass, for short), polyurea/glass/polyurea and glass/polyurea/glass sandwich structures…

Abstract

Purpose

The purpose of this paper is to study the mechanical response of polyurea, soda-lime glass (glass, for short), polyurea/glass/polyurea and glass/polyurea/glass sandwich structures under dynamic-loading conditions involving propagation of planar longitudinal shockwaves.

Design/methodology/approach

The problem of shockwave generation, propagation and interaction with material boundaries is investigated using non-equilibrium molecular dynamics. The results obtained are used to construct basic shock Hugoniot relationships associated with the propagation of shockwaves through a homogeneous material (polyurea or glass, in the present case). The fidelity of these relations is established by comparing them with their experimental counterparts, and the observed differences are rationalized in terms of the microstructural changes experienced by the shockwave-swept material. The relationships are subsequently used to predict the outcome of the interactions of shockwaves with polyurea/glass or glass/polyurea material boundaries. Molecular-level simulations are next used to directly analyze the same shockwave/material-boundary interactions.

Findings

The molecular-level simulations suggested, and the subsequent detailed microstructural analyses confirmed, the formation of topologically altered interfacial regions, i.e. polyurea/glass and glass/polyurea interphases.

Originality/value

To the authors’ knowledge, the present work is a first attempt to analyze, using molecular-level simulation methods, the interaction of shockwaves with material boundaries.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 June 2016

Mica Grujicic, Jennifer Snipes and S Ramaswami

The purpose of this paper is to propose a computational approach to establish the effect of various flow drilling screw (FS) process and material parameters on the quality and the…

Abstract

Purpose

The purpose of this paper is to propose a computational approach to establish the effect of various flow drilling screw (FS) process and material parameters on the quality and the mechanical performance of the resulting FS joints.

Design/methodology/approach

Toward that end, a sequence of three distinct computational analyses is developed. These analyses include: (a) finite-element modeling and simulations of the FS process; (b) determination of the mechanical properties of the resulting FS joints through the use of three-dimensional, continuum finite-element-based numerical simulations of various mechanical tests performed on the FS joints; and (c) determination, parameterization and validation of the constitutive relations for the simplified FS connectors, using the results obtained in (b) and the available experimental results. The availability of such connectors is mandatory in large-scale computational analyses of whole-vehicle crash or even in simulations of vehicle component manufacturing, e.g. car-body electro-coat paint-baking process. In such simulations, explicit three-dimensional representation of all FS joints is associated with a prohibitive computational cost.

Findings

Virtual testing of the shell components fastened using the joint connectors validated the ability of these line elements to realistically account for the strength, ductility and toughness of the three-dimensional FS joints.

Originality/value

The approach developed in the present work can be used, within an engineering-optimization procedure, to adjust the FS process and material parameters (design variables) in order to obtain a desired combination of the FS-joint mechanical properties (objective function).

Details

International Journal of Structural Integrity, vol. 7 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 4 November 2014

Mica Grujicic, Jennifer Snipes, S. Ramaswami and Fadi Abu-Farha

The purpose of this paper is to propose a computational approach in order to help establish the effect of various self-piercing rivet (SPR) process and material parameters on the…

Abstract

Purpose

The purpose of this paper is to propose a computational approach in order to help establish the effect of various self-piercing rivet (SPR) process and material parameters on the quality and the mechanical performance of the resulting SPR joints.

Design/methodology/approach

Toward that end, a sequence of three distinct computational analyses is developed. These analyses include: (a) finite-element modeling and simulations of the SPR process; (b) determination of the mechanical properties of the resulting SPR joints through the use of three-dimensional, continuum finite-element-based numerical simulations of various mechanical tests performed on the SPR joints; and (c) determination, parameterization and validation of the constitutive relations for the simplified SPR connectors, using the results obtained in (b) and the available experimental results. The availability of such connectors is mandatory in large-scale computational analyses of whole-vehicle crash or even in simulations of vehicle component manufacturing, e.g. car-body electro-coat paint-baking process. In such simulations, explicit three-dimensional representation of all SPR joints is associated with a prohibitive computational cost.

Findings

It is found that the approach developed in the present work can be used, within an engineering optimization procedure, to adjust the SPR process and material parameters (design variables) in order to obtain a desired combination of the SPR-joint mechanical properties (objective function).

Originality/value

To the authors’ knowledge, the present work is the first public-domain report of the comprehensive modeling and simulations including: self-piercing process; virtual mechanical testing of the SPR joints; and derivation of the constitutive relations for the SPR connector elements.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 November 2012

M. Grujicic, J.S. Snipes and N. Chandrasekharan

This paper aims to utilize purpose advanced fluid‐structure interaction, non‐linear dynamics, finite‐element analyses in order to investigate various phenomena and processes…

Abstract

Purpose

This paper aims to utilize purpose advanced fluid‐structure interaction, non‐linear dynamics, finite‐element analyses in order to investigate various phenomena and processes accompanying blast wave generation, propagation and interaction and to assess the blast‐wave‐mitigation potential of a piston‐cylinder assembly placed in front of the target structure.

Design/methodology/approach

The employed computational methods and tools are verified and validated by first demonstrating that they can quite accurately reproduce analytical solutions for a couple of well‐defined blast wave propagation and interaction problems.

Findings

The methods/tools are used to investigate the piston‐cylinder blast‐mitigation concept and the results obtained clearly reveal that significant blast‐mitigation effects can be achieved through the use of this concept. Furthermore, the results showed that the extent of the blast‐mitigation effect is a sensitive function of the piston‐cylinder geometrical parameters. Specifically, the mass of the piston and the length of the cylinder are found to be the dominant factors controlling the extent of the blast‐wave‐mitigation.

Originality/value

The work demonstrates that, when assessing the blast‐wave‐mitigation potential of the piston‐cylinder concept, it is critical that loading experienced by the piston be defined by explicitly modeling (fluid/structure) interactions between the blast wave(s) and the piston.

Details

Multidiscipline Modeling in Materials and Structures, vol. 8 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 November 2014

M. Grujicic, R. Yavari, J.S. Snipes, S. Ramaswami and R.S. Barsoum

The purpose of this paper is to address the problems of interaction of tensile stress-waves with polyurea/fused-silica and fused-silica/polyurea interfaces, and the potential for…

Abstract

Purpose

The purpose of this paper is to address the problems of interaction of tensile stress-waves with polyurea/fused-silica and fused-silica/polyurea interfaces, and the potential for the accompanying interfacial decohesion.

Design/methodology/approach

The problems are investigated using all-atom non-equilibrium molecular-dynamics methods and tools. Before these methods/tools are employed, previously determined material constitutive relations for polyurea and fused-silica are used, within an acoustic-impedance-matching procedure, to predict the outcome of the interactions of stress-waves with the material-interfaces in question. These predictions pertain solely to the stress-wave/interface interaction aspects resulting in the formation of transmitted and reflected stress- or release-waves, but do not contain any information regarding potential interfacial decohesion. Direct molecular-level simulations confirmed some of these predictions, but also provided direct evidence of the nature and the extent of interfacial decohesion. To properly model the initial state of interfacial cohesion and its degradation during stress-wave-loading, reactive forcefield potentials are utilized.

Findings

Direct molecular-level simulations of the polyurea/fused-silica interfacial regions prior to loading revealed local changes in the bonding structure, suggesting the formation of an interphase. This interphase was subsequently found to greatly affect the polyurea/fused-silica decohesion strength.

Originality/value

To the authors’ knowledge, the present work is the first public-domain report of the use of the non-equilibrium molecular dynamics and reactive force-field potentials to study the problem of interfacial decohesion caused by the interaction of tensile waves with material interfaces.

Details

International Journal of Structural Integrity, vol. 5 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 April 2004

R. Srivastava, M.A. Bakhle, K T.G. and G.L. Stefko

In this two‐part paper, aeroelastic analysis of turbomachinery blade rows and phase‐lagged boundary conditions used for analysis are described. Part I of the paper describes a…

Abstract

In this two‐part paper, aeroelastic analysis of turbomachinery blade rows and phase‐lagged boundary conditions used for analysis are described. Part I of the paper describes a study of phase‐lagged boundary condition methods used for non‐zero interblade phase angle analysis. The merits of time‐shifted (direct‐store), Fourier decomposition and multiple passage methods are compared. These methods are implemented in a time marching Euler/Navier‐Stokes solver and are applied to a fan for subsonic and supersonic inflow and to a turbine geometry with supersonic exit flow. Results showed good comparisons with published results and measured data. The time‐shifted and Fourier decomposition methods compared favorably in computational costs with respect to multiple passage analysis despite a slower rate of convergence. The Fourier‐decomposition method was found to be better suited for workstation environment as it required significantly less storage, although at the expense of slightly higher computational cost. The time‐shifted method was found to be better suited for computers where fast input‐output devices are available.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 14 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 August 2013

M. Grujicic, J.S. Snipes, N. Chandrasekharan and S. Ramaswami

The purpose of this paper is to assess the blast‐mitigation potential and the protection ability of an air‐vacated buffer placed in front of a target structure under realistic…

Abstract

Purpose

The purpose of this paper is to assess the blast‐mitigation potential and the protection ability of an air‐vacated buffer placed in front of a target structure under realistic combat‐theatre conditions.

Design/methodology/approach

The blast‐mitigation efficacy of the air‐vacated buffer concept is investigated computationally using a combined Eulerian‐Lagrangian (CEL) fluid‐structure interaction (FSI) finite‐element analysis.

Findings

The two main findings resulting from the present work are: the air‐vacated buffer concept yields significant blast‐mitigation effects; and the buffer geometry and vacated‐air material‐state parameters (e.g. pressure, mass density, etc.) may significantly affect the extent of the blast‐mitigation effect.

Originality/value

The main contribution of the present work is a demonstration of the critical importance of timely deployment of the buffer relative to the arrival of the incident wave in order to fully exploit the air‐vacated buffer concept.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 28000