Search results

1 – 10 of over 2000
Article
Publication date: 19 March 2021

Abdelraheem M. Aly and Ehab Mahmoud Mohamed

This study aims to illustrate the impacts of the motion of circular cylinders on the natural convection flow from variable heated partitions inside the X-shaped cavity filled with…

Abstract

Purpose

This study aims to illustrate the impacts of the motion of circular cylinders on the natural convection flow from variable heated partitions inside the X-shaped cavity filled with Al2O3-water nanofluid. A partial layer of a homogeneous/heterogeneous porous medium is located in the top area of the X-shaped cavity.

Design/methodology/approach

Three different cases of the porous media including homogeneous, horizontal heterogeneous and vertical heterogeneous porous media were considered. Three different thermal conditions of the embedded circular cylinders including hot, cold and adiabatic conditions are investigated. An incompressible scheme of smoothed particle hydrodynamics (ISPH) method is modified to compute the non-linear partial differential equations of the current problem. Two variable lengths of the left and right sides of the X-shaped cavity have a high-temperature Th and a low-temperature Tc, respectively. The other wall parts are adiabatic. The numerical simulations are elucidating the dependence of the heat transfer and fluid flow characteristics on lengths of hot/cold source Lh, porous cases, Darcy parameter, thermal conditions of the embedded circular cylinders and solid volume fraction.

Findings

Overall, an increment in length of hot/cold source leads to augmentation on the temperature distributions and flow intensity inside the X-shaped cavity. The hot thermal condition of the circular cylinder augments the temperature distributions. The homogeneous porous medium slows down the flow speed in the top porous layer of the X-shaped cavity. The average Nusselt number decreases as Lh increases.

Originality/value

ISPH method simulated the motion of circular cylinders in the X-shaped cavity. The X-shaped cavity is saturated with a partial layer porous medium. It is found that an increase in hot source length augments the temperature and fluid flow. ISPH method can easily handle the motion of cylinders in the X-shaped cavity. Different thermal conditions of cylinders can change the temperature distributions in X-cavity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2006

Horng‐Wen Wu, Shiang‐Wuu Perng, Sheng‐Yuan Huang and Tswen‐Chyuan Jue

To investigate the effect of transient mixed convective flow interaction between circular cylinders and channel walls on heat transfer with three circular cylinders arranged in an…

Abstract

Purpose

To investigate the effect of transient mixed convective flow interaction between circular cylinders and channel walls on heat transfer with three circular cylinders arranged in an isosceles right‐angled triangle within a horizontal channel.

Design/methodology/approach

This paper uses a semi‐implicit finite element method to solve the incompressible Navier‐Stokes equation, energy equation and continuity equation in primitive‐variable form by assuming the flow to be two‐dimensional and laminar.

Findings

Provides information indicating that the transient streamlines, isotherms, drag coefficient and time‐mean Nusselt number around the surfaces of three cylinders are affected by various gap‐to‐diameter ratio, Reynolds numbers and Grashof numbers. The results show that the maximum value of surface‐ and time‐mean Nusselt number along cylinders exists at S=0.75.

Research limitations/implications

It is limited to two‐dimensional laminar flow for the transient mixed convective flow interaction between circular cylinders and channel walls in a horizontal channel.

Practical implications

A very useful source of information and favorable advice for people is applied to heat exchangers, space heating, power generators and other thermal apparatus.

Originality/value

The results of this study may be of interest to engineers attempting to develop thermal control of thermal apparatus and to researchers interested in the flow‐modification aspects of mixed convection between circular cylinders and channel walls in a horizontal channel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 16 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 May 2022

Ahmed Benamor, Aissa Abidi-Saad, Ridha Mebrouk and Sarra Fatnassi

This study aims at investigating two-dimensional laminar flow of power-law fluids around three unconfined side-by-side cylinders.

Abstract

Purpose

This study aims at investigating two-dimensional laminar flow of power-law fluids around three unconfined side-by-side cylinders.

Design/methodology/approach

The numerical study is performed by solving the governing (continuity and momentum) equations using a finite volume-based code ANSYS Fluent. The numerical results have been presented for different combinations of the governing dimensionless parameters (dimensionless spacing, 1.2 = L = 4; Reynolds number, 0.1 = Re = 100; power-law index, 0.2 = n = 1.8). The dependence of the kinematic and macroscopic characteristics of the flow such as streamline patterns, distribution of the surface pressure coefficient, total drag coefficient with its components (pressure and friction) and total lift coefficient on these dimensionless parameters has been discussed in detail.

Findings

It is found that the separation of the flow and the apparition of the wake region accelerate as the dimensionless spacing decreases, the number of the cylinder increases and/or the fluid behavior moves from shear-thinning to Newtonian then to shear-thickening behavior. In addition, the distribution of the pressure coefficient on the surface of the cylinders presents a complex dependence on the fluid behavior index and Reynolds number when the dimensionless spacing between two adjacent cylinders is varied. At low Reynolds numbers, the drag coefficient of shear-thinning fluids is stronger than that of Newtonian fluids; this tendency decreases progressively with increasing of Re until a critical value; beyond the critical Re, the opposite trend is observed. The lift coefficient of the middle cylinder is null, whereas, the exterior cylinders experience opposite lift coefficients, which show a complex dependence on the dimensionless spacing, the Reynolds number and the power-law index.

Originality/value

The flow over bluff bodies is a practical engineering problem. In the literature, it can be seen that the previous studies on non-Newtonian fluids are limited to the flow over one or two cylinders (effect of an odd number of cylinders on each other). Besides that, the available results concerning the flow of Newtonian fluids over three cylinders are limited to the high Reynolds numbers region only. However, this work treats the flow of non-Newtonian power-law fluids past three circular cylinders in side-by-side arrangements under a wide range of Re. The outcome of the present study demonstrates that the augmentation of the geometry complexity to three cylinders (effect of pair surrounding cylinders on the surrounded ones in what concerns Von Karman Street phenomenon) causes a drastic change in the flow patterns and in the macroscopic characteristics. The present results may be used to predict the flow behavior around multiple side-by-side cylinders.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 March 2023

Mostafa Esmaeili and Amir Hossein Rabiee

This study aims to numerically explore the heat transfer characteristics in turbulent two-degree-of-freedom vortex-induced vibrations (VIVs) of three elastically mounted circular

Abstract

Purpose

This study aims to numerically explore the heat transfer characteristics in turbulent two-degree-of-freedom vortex-induced vibrations (VIVs) of three elastically mounted circular cylinders.

Design/methodology/approach

The cylinders are at the vertices of an isosceles triangle with a base and height that are the same. The finite volume technique is used to calculate the Reynolds-averaged governing equations, whereas the structural dynamics equations are solved using the explicit integration method. Simulations are performed for three different configurations, constant mass ratio and natural frequency, as well as distinct reduced velocity values.

Findings

As a numerical challenge, the super upper branch observed in the experiment is well-captured by the current numerical simulations. According to the computation findings, the vortex-shedding around the cylinders increases flow mixing and turbulence, hence enhancing heat transfer. At most reduced velocities, the Nusselt number of downstream cylinders is greater than that of upstream cylinders due to the impact of wake-induced vibration, and the maximum heat transfer improvement of these cylinders is 21% (at Ur = 16), 23% (at Ur = 5) and 20% (at Ur = 15) in the first, second and third configurations, respectively.

Originality/value

The main novelty of this study is inspecting the thermal behavior and turbulent flow–induced vibration of three circular cylinders in the triangular arrangement.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 November 2014

Palaniyandi Ponnusamy

The purpose of this paper is to study the problem of wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal (triangle…

Abstract

Purpose

The purpose of this paper is to study the problem of wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal (triangle, square, pentagon and hexagon) cross-section immersed in fluid is using Fourier expansion collocation method, with in the frame work of linearized, three-dimensional theory of thermo-piezoelectricity.

Design/methodology/approach

A mathematical model is developed to study the wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal cross-sections immersed in fluid is studied using the three-dimensional theory of elasticity. Three displacement potential functions are introduced, to uncouple the equations of motion and the heat and electric conductions. The frequency equations are obtained for longitudinal and flexural (symmetric and antisymmetric) modes of vibration and are studied numerically for triangular, square, pentagonal and hexagonal cross-sectional bar immersed in fluid. Since the boundary is irregular in shape; it is difficult to satisfy the boundary conditions along the curved surface of the polygonal bar directly. Hence, the Fourier expansion collocation method is applied along the boundary to satisfy the boundary conditions. The roots of the frequency equations are obtained by using the secant method, applicable for complex roots.

Findings

From the literature survey, it is clear that the free vibration of an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal cross-sectional bar immersed in fluid have not been analyzed by any of the researchers, also the previous investigations in the vibration problems of transversely isotropic thermo-piezoelectric solid bar of circular cross-sections only. So, in this paper, the wave propagation in thermo-piezoelectric cylindrical bar of polygonal cross-sections immersed in fluid are studied using the Fourier expansion collocation method. The computed non-dimensional frequencies are plotted in the form of dispersion curves and its characteristics are discussed, also a comparison is made between non-dimensional wave numbers for longitudinal and flexural modes piezoelectric, thermo-piezoelectric and thermo-piezoelectric polygonal cross-sectional bars immersed in fluid.

Research limitations/implications

Wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal cross-sectional bar immersed in fluid have not been analyzed by any of the researchers, also the previous investigations in the vibration problems of transversely isotropic thermo-piezoelectric solid bar of circular cross-sections only. So, in this paper, the wave propagation in thermo-piezoelectric cylindrical bar of polygonal cross-sections immersed in fluid are studied using the Fourier expansion collocation method. The computed non-dimensional frequencies are plotted in the form of dispersion curves and its characteristics are discussed, also a comparison is made between non-dimensional wave numbers for longitudinal and flexural modes of piezoelectric, thermo-piezoelectric and thermo-piezoelectric polygonal cross-sectional bars immersed in fluid.

Originality/value

The researchers have discussed the wave propagation in thermo-piezoelectric circular cylinders using three-dimensional theory of thermo-piezoelectricity, but, the researchers did not analyzed the wave propagation in an arbitrary/polygonal cross-sectional bar immersed in fluid. So, the author has studied the free vibration analysis of thermo-piezoelectric polygonal (triangle, square, pentagon and hexagon) cross-sectional bar immersed in fluid using three-dimensional theory elasticity. The problem may be extended to any kinds of cross-sections by using the proper geometrical relations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 March 2021

S. D. Farahani and Amir Hossein Rabiee

In this study, for the first time, the efficacy of control rods for full suppression of vortex-induced vibrations (VIV) and galloping of an elastically supported rigid square…

Abstract

Purpose)

In this study, for the first time, the efficacy of control rods for full suppression of vortex-induced vibrations (VIV) and galloping of an elastically supported rigid square cylinder that vibrates freely in the cross-flow direction is investigated.

Design/methodology/approach

To this aim, two small control rods are placed at constant angles of ± 45° relative to the horizontal axis and then the influence of diameter and spacing ratios on the oscillation and hydrodynamic response along with the vortex structure behind the cylinder is evaluated in the form of nine different cases in both VIV and galloping regions.

Findings

The performed simulations show that using the configuration presented in this study results in full VIV suppression for the spacing ratios G/D = 0.5, 1 and 1.5 at the diameter ratios d/D = 0.1, 0.2 and 0.3 (D: diameter of square cylinder, G: distance between rods and cylinder, d: diameter of rods). On the contrary, a perfect attenuation of galloping is only achieved at the largest diameter (d/D = 0.3) and the smallest spacing ratio (G/D = 0.5). In general, for both VIV and galloping regions, with increasing diameter ratio and decreasing spacing ratio, the effect of the control rods wake in the vortex street of square cylinder gradually increases. This trend carries on to the point where the vortex shedding is completely suppressed and only the symmetric wake of control rods is observed.

Originality/value

So far, the effect of rod control on VIV of a square cylinder and its amplitude of oscillations has not been investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 July 2021

Sang-Do Choi, Tae-Soo Eum, Eun Taek Shin and Chang Geun Song

Complicated motion of vortex is frequently observed in the wake of islands. These kinds of swirling fluid cause the trap of sediments or pollutants, subsequently inducing the dead…

Abstract

Purpose

Complicated motion of vortex is frequently observed in the wake of islands. These kinds of swirling fluid cause the trap of sediments or pollutants, subsequently inducing the dead zone, odor or poor water quality. Therefore, the understanding of flow past a circular cylinder is significant in predicting water quality and positioning the immersed structures. This study aims to investigate the flow properties around a structure using Navier-slip boundary conditions.

Design/methodology/approach

Boundary conditions are a major factor affecting the flow pattern because the magnitude of flow detachment on a surface can redistribute the tangential stress on the wall. Therefore, the authors performed an analysis of laminar flow passing through a circular structure to investigate the effect of boundary conditions on the flow pattern.

Findings

The authors examined the relationship between the partial-slip boundary conditions and the flow behavior at low Reynolds number past a circular cylinder considering velocity and vorticity distributions behind the cylinder, lift coefficient and Strouhal number. The amplitude of lift coefficient by the partial slip condition had relatively small value compared with that of no-slip condition, as the wall shear stress acting on the cylinder became smaller by the velocity along the cylinder surface. The frequency of the asymmetrical vortex formation with partial slip velocity was increased compared with no-slip case due to the intrinsic inertial effect of Navier-slip condition.

Originality/value

The ability to engineer slip could have dramatic influences on flow, as the viscous dominated motion can lead to large pressure drops and large axial dispersion. By the slip length control, no-slip, partial-slip and free-slip boundary conditions are tunable, and the velocity distributions at the wall, vortex formation and wake pattern including the amplitude of lift coefficient and frequency were significantly affected by slip length parameter.

Details

World Journal of Engineering, vol. 19 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 June 2016

Saman Rashidi, Javad Abolfazli Esfahani, Mohammad Sadegh Valipour, Masoud Bovand and Ioan Pop

The analysis of the flow field and heat transfer around a tube row or tube banks wrapped with porous layer have many related engineering applications. Examples include the reactor…

Abstract

Purpose

The analysis of the flow field and heat transfer around a tube row or tube banks wrapped with porous layer have many related engineering applications. Examples include the reactor safety analysis, combustion, compact heat exchangers, solar power collectors, high-performance insulation for buildings and many another applications. The purpose of this paper is to perform a numerical study on flows passing through two circular cylinders in side-by-side arrangement wrapped with a porous layer under the influence of a magnetic field. The authors focus the attention to the effects of magnetic field, Darcy number and pitch ratio on the mechanism of convection heat transfer and flow structures.

Design/methodology/approach

The Darcy-Brinkman-Forchheimer model for simulating the flow in porous medium along with the Maxwell equations for providing the coupling between the flow field and the magnetic field have been used. Equations with the relevant boundary conditions are numerically solved using a finite volume approach. In this study, Stuart and Darcy numbers are varied within the range of 0 < N < 3 and 1e-6 < Da < 1e-2, respectively, and Reynolds and Prandtl numbers are equal to Re=100 and Pr=0.71, respectively.

Findings

The results show that the drag coefficient decreases for N < 0.6 and increases for N > 0.6. Also, the effect of magnetic field is negligible in the gap between two cylinders because the magnetic field for two cylinders counteracts each other in these regions.

Originality/value

To the authors knowledge, in the open literature, flow passing over two circular cylinders in side-by-side arrangement wrapped with a porous layer has been rarely investigated especially under the influence of a magnetic field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 June 2019

Niaz B. Khan, Zainah B. Ibrahim, Mian Ashfaq Ali, Mohammed Jameel, Muhammad Ijaz Khan, Ahad Javanmardi and D.O. Oyejobi

Over the past few decades, the flow around circular cylinders has been one of the highly researched topics in the field of offshore engineering and fluid-structure interaction…

Abstract

Purpose

Over the past few decades, the flow around circular cylinders has been one of the highly researched topics in the field of offshore engineering and fluid-structure interaction (FSI). In the current study, numerical simulations for flow around a fixed circular cylinder are performed at Reynolds number (Re) = 3900 with the LES method using the ICEM-CFD and ANSYS Fluent tool for meshing and analysis, respectively. Previously, similar studies have been conducted at the same Reynolds number, but there have been discrepancies in the results, particularly in calculating the recirculation length and angle of separation. In addition, the purpose of this study is to address the impact of time interval averaging to obtain the fully converged solution.

Design/methodology/approach

This study presents the LES method, using the ICEM-CFD and ANSYS fluent tool for meshing and analysis.

Findings

In the current study, turbulence statistics are sampled for 25, 50, 75 and 100 vortex-shedding cycles with the CFL value O (1). The recirculation length, angle of separation, hydrodynamic coefficients and the wake behind the cylinder are investigated up to ten diameters. The drag coefficient and Strouhal number are observed to be less sensitive, whereas the recirculation length appeared to be highly dependent on the average time statistics and the non-dimensional time step. Similarly, the mean streamwise and cross-flow velocity are observed to be sensitive to the average time statistics and non-dimensional time step in the wake region near the cylinder.

Originality/value

In the current investigation, turbulence statistics are sampled for 25, 50, 75 and 100 vortex-shedding cycles with the CFL value O (1), using large eddy simulation method at Re = 3900 around a circular cylinder. The impact of time interval averaging to obtain the fully converged mean flow field is addressed. No such consideration is yet published in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 September 2019

Amin Rahmat, Hossein Nasiri, Marjan Goodarzi and Ehsan Heidaryan

This paper aims to introduce a numerical investigation of aquatic locomotion using the smoothed particle hydrodynamics (SPH) method.

Abstract

Purpose

This paper aims to introduce a numerical investigation of aquatic locomotion using the smoothed particle hydrodynamics (SPH) method.

Design/methodology/approach

To model this problem, a simple improved SPH algorithm is presented that can handle complex geometries using updatable dummy particles. The computational code is validated by solving the flow over a two-dimensional cylinder and comparing its drag coefficient for two different Reynolds numbers with those in the literature.

Findings

Additionally, the drag coefficient and vortices created behind the aquatic swimmer are quantitatively and qualitatively compared with available credential data. Afterward, the flow over an aquatic swimmer is simulated for a wide range of Reynolds and Strouhal numbers, as well as for the amplitude envelope. Moreover, comprehensive discussions on drag coefficient and vorticity patterns behind the aquatic are made.

Originality/value

It is found that by increasing both Reynolds and Strouhal numbers separately, the anguilliform motion approaches the self-propulsion condition; however, the vortices show different pattern with these increments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 2000