Search results

1 – 10 of 594
Article
Publication date: 2 February 2024

Xiongmin Tang, Zexin Zhou, Yongquan Chen, ZhiHong Lin, Miao Zhang and Xuecong Li

Dielectric barrier discharge (DBD) is widely used in the treatment of skin disease, surface modification of material and other fields of electronics. The purpose of this paper is…

Abstract

Purpose

Dielectric barrier discharge (DBD) is widely used in the treatment of skin disease, surface modification of material and other fields of electronics. The purpose of this paper is to design a high-performance power supply with a compact structure for excimer lamps in electronics application.

Design/methodology/approach

To design a high-performance power supply with a compact structure remains a challenge for excimer lamps in electronics application, a current-source type power supply in a single stage with power factor correction (PFC) is proposed. It consists of an excitation voltage generation unit and a PFC unit. By planning the modes of the excitation voltage generation unit, a bipolar pulse excitation voltage with a high rising and falling rate is generated. And a high power factor (PF) on the AC side is achieved by the interaction of a non-controlled rectifier and two inductors.

Findings

The experimental results show that not only a high-frequency and high-voltage bipolar pulse excitation voltage with a high average rising and falling rate (7.51GV/s) is generated, but also a high PF (0.992) and a low total harmonic distortion (5.54%) is obtained. Besides, the soft-switching of all power switches is realized. Compared with the sinusoidal excitation power supply and the current-source power supply, the proposed power supply in this paper can take advantage of the potential of excimer lamps.

Originality/value

A new high-performance power supply with a compact structure for DBD type excimer lamps is proposed. The proposed power supply can work stably in a wide range of frequencies, and the smooth regulation of the discharge power of the excimer lamp can be achieved by changing the switching frequency. The ideal excitation can be generated, and the soft switching can be realized. These features make this power supply a key player in the outstanding performance of the DBD excimer lamps application.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 10 October 2022

Xiongmin Tang, Tianhong Jiang, Weizheng Chen, ZhiHong Lin, Zexin Zhou, Chen Yongquan and Miao Zhang

How to use a simple and classical topology to provide a high-efficiency excitation voltage for dielectric barrier discharge (DBD) loads is one of the primary problems to be solved…

Abstract

Purpose

How to use a simple and classical topology to provide a high-efficiency excitation voltage for dielectric barrier discharge (DBD) loads is one of the primary problems to be solved for DBD application fields.

Design/methodology/approach

To address the issue, a set of modes that can generate a high-efficiency pulse excitation voltage in a full-bridge inverter are adopted. With the set of modes, the unique equivalent circuit of DBD loads and the parasitic parameter of the step-up transformer can be fully used. Based on the set of modes, a control strategy for the full-bridge inverter is designed. To test the performance of the power supply, a simulation model is established and an experimental prototype is made with a DBD excimer lamp.

Findings

The simulation and experimental results show that not only a high-efficiency excitation voltage can be generated for the DBD load, but also the soft switching of all power switch is realized. Besides this, with the set of modes and the proposed control strategy, the inverter can operate in a high frequency. Compared with other types of power supplies, the power supply used in the paper can fully take advantage of the potential of the excimer lamp at the same input power.

Originality/value

This work considers that how to use a simple and classical topology to provide a high-efficiency excitation voltage for DBD loads is one of the primary problems to be solved for DBD application fields.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 13 December 2022

Xuebing Su, Yang Wang, Xiangliang Jin, Hongjiao Yang, Yuye Zhang, Shuaikang Yang and Bo Yu

As it is known, the electrostatic discharge (ESD) protection design of integrated circuit is very important, among which the silicon controlled rectifier (SCR) is one of the most…

Abstract

Purpose

As it is known, the electrostatic discharge (ESD) protection design of integrated circuit is very important, among which the silicon controlled rectifier (SCR) is one of the most commonly used ESD protection devices. However, the traditional SCR has the disadvantages of too high trigger voltage, too low holding voltage after the snapback and longer turn-on time. The purpose of this paper is to design a high-performance SCR in accordance with the design window under 0.25 µm process, and provide a new scheme for SCR design to reduce the trigger voltage, improve the holding voltage and reduce the turn-on time.

Design/methodology/approach

Based on the traditional SCR, an RC-INV trigger circuit is introduced. Through theoretical analysis, TCAD simulation and tape-out verification, it is shown that RC-INV triggering SCR can reduce the trigger voltage, increase the holding voltage and reduce the turn-on time of the device on the premise of maintaining good robustness.

Findings

The RC-INV triggering SCR has great performance, and the test shows that the transmission line pulse curve with almost no snapback can be obtained. Compared with the traditional SCR, the trigger voltage decreased from 32.39 to 16.24 V, the holding voltage increased from 3.12 to 14.18 V and the turn-on time decreased from 29.6 to 16.6 ns, decreasing by 43.9% the level of human body model reached 18 kV+.

Originality/value

Under 0.25 µm BCD process, this study propose a high-performance RC-INV triggering SCR ESD protection device. The work presented in this paper has a certain guiding significance for the design of SCR ESD protection devices.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Content available
Article
Publication date: 29 September 2022

Kaiyuan Wu, Hao Huang, Ziwei Chen, Min Zeng and Tong Yin

This paper aims to overcome the limitations of low efficiency, low power density and strong electromagnetic interference (EMI) of the existing pulsed melt inert gas (MIG) welding…

Abstract

Purpose

This paper aims to overcome the limitations of low efficiency, low power density and strong electromagnetic interference (EMI) of the existing pulsed melt inert gas (MIG) welding power supply. So a novel and simplified implementation of digital high-power pulsed MIG welding power supply with LLC resonant converter is proposed in this work.

Design/methodology/approach

A simple parallel full-bridge LLC resonant converter structure is used to design the digital power supply with high welding current, low arc voltage, high open-circuit voltage and a wide range of arc loads, by effectively exploiting the variable load and high-power applications of LLC resonant converter.

Findings

The efficiency of each converter can reach up to 92.3%, under the rated operating condition. Notably, with proposed scheme, a short-circuit current mutation of 300 A can stabilize at 60 A within 8 ms. Furthermore, the pulsed MIG welding test shows that a stable welding process with 280 A peak current can be realized and a well-formed weld bead can be obtained, thereby verifying the feasibility of LLC resonant converter for pulsed MIG welding power supply.

Originality/value

The high efficiency, high power density and weak EMI of LLC resonant converter are conducive to the further optimization of pulsed MIG welding power supply. Consequently, a high performance welding power supply is implemented by taking adequate advantages of LLC resonant converter, which can provide equipment support for exploring better pulsed MIG welding processes.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 November 2023

Mohabbat Amirnejad, Mohammad Rajabi and Roohollah Jamaati

This study aims to investigate the effect of electrodeposition parameters (i.e. time and voltage) on the properties of hydroxyapatite (HA) coating fabricated on Ti6Al4V surface.

22

Abstract

Purpose

This study aims to investigate the effect of electrodeposition parameters (i.e. time and voltage) on the properties of hydroxyapatite (HA) coating fabricated on Ti6Al4V surface.

Design/methodology/approach

A full factorial design along with response surface methodology was utilized to evaluate the main effect of independent variables and their relative interactions on response variables. The effect of electrodeposition voltage and deposition time on HA coatings Ca/P molar ratio and the size of deposited HA crystals were examined by structural equation modeling (SEM). The formation of plate-like and needle-like HA crystals was observed for all experiments.

Findings

The results obtained showed that the higher electrodeposition voltage leads to lower Ca/P values for HA coatings. This is more significant at lower deposition times, where at a 20-minute deposition time, the voltage increased from 2 to 3 V and the Ca/P decreased from 2.27 to 1.52. Full factorial design results showed that electrodeposition voltage has a more significant effect on the size of the deposited HA crystal. With increasing the voltage from 2 to 3 V at a deposition time of 20 min, the HA crystal size varied from 99 to 36 µm.

Originality/value

The investigation delved into the impact of two critical parameters, deposition time and voltage, within the electrodeposition process on two paramount properties of HA coatings. Analyzing the alterations in coating characteristics relative to variations in these process parameters can serve as a foundational guide for subsequent research in the domain of calcium-phosphate deposition for implants.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 April 2024

Erol Can and Ugur Kilic

Static inverters are very important for the emergency energy distribution system of aircraft and similar machines. At the same time, the electrical energy produced at high…

Abstract

Purpose

Static inverters are very important for the emergency energy distribution system of aircraft and similar machines. At the same time, the electrical energy produced at high frequency for electrical devices is used to reduce the weight of the cables in the aircraft and spacecraft because of the skin effect. In the high-frequency system, a thinner cable cross-section is used, and a great weight reduction occurs in the aircraft. So, fuel economy, less and late wear of the materials (landing gear, etc.) can be obtained with decreasing weight. This paper aims to present the development of a functional multilevel inverter (FMLI) with fractional sinus pulse width modulation (FSPWM) and a reduced number of switches to provide high-frequency and quality electrical energy conversion.

Design/methodology/approach

After the production of FSPWM for FMLI with a reduced component, which, to the best of the authors’ knowledge, is presented for the first time in this study, is explained step by step, and eight operating states are given according to different FSPWMs operating the circuit. The designed inverter and modulation technique are compared by testing the conventional modular multilevel inverter on different loads.

Findings

According to application results, it is seen that there is a 50% reduction in cross-section from 100 Hz to 400 Hz with the skin effect. At 1000 Hz, there is a 90% cross-section reduction. The decrease can be in cable weights that may occur in aircraft from 10 kg to 100 kg according to different frequencies. It causes less harmonic distortion than conventional converters. This supports the safer operation of the system. Compared to the traditional system, the proposed system provides more amplitude in converting the source to alternating voltage and increases the efficiency.

Practical implications

FSPWM is developed for multilevel inverters with reduced components at the high frequency and cascaded switching studies in the power electronics of aircraft.

Social implications

Although the proposed system has less current and power loss as mentioned in the previous sections, it contains fewer power elements than conventional inverters that are equivalent for different hardware levels. This not only reduces the cost of the system but also provides ease of maintenance. To reduce the cable load in aircraft and create more efficient working conditions, 400 Hz alternative voltage is used. The proposed system causes less losses and lower harmonic distortions than traditional systems. This will reduce possible malfunctions and contribute to aircraft reliability for passengers and cargo. As technology develops, it is revealed that the proposed inverter system will be more efficient than traditional inverters when devices operating at frequencies higher than 400 Hz are used. With the proposed inverter, safer operation will be ensured, while there will be less energy loss, less fuel consumption and less carbon emissions to the environment.

Originality/value

The proposed inverter structure shows that it can provide energy transmission for electrical devices in space and aircraft by using the skin effect. It also contains less power elements than the traditional inverters, which are equivalent for different levels of hardware.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 February 2023

Mingxiao Dai, Xu Peng, Xiao Liang, Xinyu Zhu, Xiaohan Liu, Xijun Liu, Pengcheng Han and Chao Wu

The purpose of this paper is to propose a DC-port voltage balance strategy realizing it by logic combination modulation (LCM). This voltage balance strategy is brief and high…

Abstract

Purpose

The purpose of this paper is to propose a DC-port voltage balance strategy realizing it by logic combination modulation (LCM). This voltage balance strategy is brief and high efficient, which can be used in many power electronic devices adopting the cascaded H-bridge rectifier (CHBR) such as power electronic transformer (PET).

Design/methodology/approach

The CHBR is typically as a core component in the power electronic devices to implement the voltage or current conversion. The modulation method presented here is aiming to solve the voltage imbalance problem occurred in the CHBR with more stable work station and higher reliability in ordinary operating conditions. In particular, by changing the switch states smoothly and quickly, the DC-port voltage can be controlled as the ideal value even one of the modules in CHBR is facing the load-removed problem.

Findings

By using the voltage balance strategy of LCM, the problem of voltage imbalance occurring in three-phase cascaded rectifiers has been solved properly. With the lower modulation depth, the efficiency of the strategy is shown to be better and stronger. The strategy can work reliably and quickly no matter facing the problem as load-removed change or the ordinary operating conditions.

Research limitations/implications

The limitation of the proposed DC-port voltage balance strategy is calculated and proved, in a three-module CHBR, the LCM could balance the DC-port voltage while one module facing the load-removed situation under 0.83 modulation depth.

Originality/value

This paper provides a useful and particular voltage balance strategy which can be used in the topology of three-phase cascaded rectifier. The value of the strategy is that a brief and reliable voltage balance method in the power electronic devices can be achieved. What is more, facing the problem, such as load-removed, in outport, the strategy can response quickly with no switch jump and switch frequency rising.

Details

Microelectronics International, vol. 40 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 28 February 2022

Jayarama Pradeep, Krishnakumar Vengadakrishnan, Anbarasan Palani and Thamizharasan Sandirasegarane

Multilevel inverters become very popular in medium voltage applications owing to their inherent capability of reconciling stepped voltage waveform with reduced harmonic distortion…

Abstract

Purpose

Multilevel inverters become very popular in medium voltage applications owing to their inherent capability of reconciling stepped voltage waveform with reduced harmonic distortion and electromagnetic interference. They have several disadvantages like more number of switching devices required and devices with high voltage blocking and need additional dc sources count to engender particular voltage. So this paper aims to propose a novel tri-source symmetric cascaded multilevel inverter topology with reduced number of switching components and dc sources.

Design/methodology/approach

A novel multilevel inverter has been suggested in this study, offering minimal switch count in the conduction channel for the desired voltage level under symmetric and asymmetric configurations. This novel topology is optimized to prompt enormous output voltage levels by employing constant power switches count and/or dc sources of voltage. The topology claims its advantages in generating higher voltage levels with lesser number of voltage sources, gate drivers and dc voltage sources.

Findings

The consummation of the proposed arrangement is verified in Matlab/Simulink R2015b, and an experimental prototype for 7-level, 13-level, 21-level, 29-level, 25-level and 49-level operation modes is constructed to validate the simulation results.

Originality/value

The proposed topology operated with six new algorithms for asymmetrical configuration to propel increased number of voltage levels with reduced power components.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 16 October 2023

Y.F. Shu, B. Jiang, C. Wang and R.G. Song

The purpose of this paper is to study the effects of voltage on microstructure and properties of micro-arc oxidation (MAO) ceramic coatings formed on AZ31B magnesium alloy under…

Abstract

Purpose

The purpose of this paper is to study the effects of voltage on microstructure and properties of micro-arc oxidation (MAO) ceramic coatings formed on AZ31B magnesium alloy under the constant current–constant voltage operation mode.

Design/methodology/approach

The wear and corrosion resistance of MAO coating on AZ31B magnesium alloy was studied by MAO in silicate electrolyte under constant current and constant voltage.

Findings

When the voltage is 360 V, the wear and corrosion resistance of AZ31B magnesium alloy is the best.

Originality/value

The wear and corrosion resistance of MAO coating on AZ31B magnesium alloy was studied by friction wear and electrochemical workstation.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 6 July 2023

Zakaria Mohamed Salem Elbarbary, Ahmed A. Alaifi, Saad Fahed Alqahtani, Irshad Mohammad Shaik, Sunil Kumar Gupta and Vijayakumar Gali

Switching power converters for photovoltaic (PV) applications with high gain are rapidly expanding. To obtain better voltage gain, low switch stress, low ripple and cost-effective…

763

Abstract

Purpose

Switching power converters for photovoltaic (PV) applications with high gain are rapidly expanding. To obtain better voltage gain, low switch stress, low ripple and cost-effective converters, researchers are developing several topologies.

Design/methodology/approach

It was decided to use the particle swarm optimization approach for this system in order to compute the precise PI controller gain parameters under steady state and dynamic changing circumstances. A high-gain q- ZS boost converter is used as an intermittent converter between a PV and brushless direct current (BLDC) motor to attain maximum power point tracking, which also reduces the torque ripples. A MATLAB/Simulink environment has been used to build and test the positive output quadratic boost high gain converters (PQBHGC)-1, PQBHGC-8, PQBHGC-4 and PQBHGC-3 topologies to analyse their effectiveness in PV-driven BLDC motor applications. The simulation results show that the PQBHGC-3 topology is effective in comparison with other HG cell DC–DC converters in terms of efficiency, reduced ripples, etc. which is most suitable for PV-driven BLDC applications.

Findings

The simulation results have showed that the PQBHGC-3 gives better performance with minimum voltage ripple of 2V and current ripple of 0.4A which eventually reduces the ripples in the torque in a BLDC motor. Also, the efficiency for the suggested PQBHGC-3 for PV-based BLDC applications is the best with 99%.

Originality/value

This study is the first of its kind comparing the different topologies of PQBHGC-1, PQBHGC-8, PQBHGC-4 and PQBHGC-3 topologies to analyse their effectiveness in PV-driven BLDC motor applications. This study suggests that the PQBHGC-3 topology is most suitable in PV-driven BLDC applications.

Details

Frontiers in Engineering and Built Environment, vol. 4 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

1 – 10 of 594