Search results

1 – 10 of 133
Article
Publication date: 5 July 2013

Krzysztof Krykowski, Janusz Hetmańczyk and Dawid Makieła

When phase windings of brushless DC motor are switched, additional voltage drops across inductances of main circuit appear. These drops lead to, among other effects, increase of…

Abstract

Purpose

When phase windings of brushless DC motor are switched, additional voltage drops across inductances of main circuit appear. These drops lead to, among other effects, increase of torque‐speed curve slope. The discussed research has been aimed at working out a simple and precise method of identifying torque‐speed characteristic of PM BLDC motor. The elaborated method takes into account the influence of windings switching and motor inductances on motor torque‐speed characteristic. In order to assess the results, extensive test simulations of models implemented in Matlab/Simulink software have been run. Results of analysis and test simulations have been compared with lab test results of two real PM BLDC motors.

Design/methodology/approach

Analytical calculations take into consideration phenomena occurring during windings switch‐overs and impact of inductance on emerging voltage and rotational speed drops. It has been pointed out that on account of main circuit inductance, the average value of source current is less than average value of equivalent current generating electromagnetic torque. For analysis sake it has been assumed when windings are being switched‐over the current is kept constant; the motor parameters have also been assumed to be constant.

Findings

A novel and accurate method of determining torque‐speed characteristics of PM BLDC motor has been worked out. This method has been investigated with the help of motor computer models implemented in Matlab/Simulink software and the obtained results have been subsequently compared with results of laboratory tests of two commercially available PM BLDC motors.

Research limitations/implications

The object of the research was brushless DC motor with permanent magnet excitation. The impact of windings switch‐overs on torque‐speed curves of the motor has been analysed. Analytical method which makes it possible to determine torque‐speed curve of this motor very easily has been elaborated. Computer model of PM BLDC motor for Matlab/Simulink software has also been worked out. Extensive simulations helping to verify the proposed method have been run. Results of analysis and simulation tests have been verified by means of laboratory tests of two commercially available PM BLDC motors.

Practical implications

PM BLDC motors are used more and more widely. The new method of determining PM BLDC motors torque‐speed curves will facilitate analysis and design of drive systems utilizing these motors and will also speed up calculations.

Originality/value

The presented method of determining torque‐speed curves of PM BLDC motor is novel and much more precise than methods commonly used nowadays. Recognized methods usually neglect impact of inductance on motor properties.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 December 2021

Bharathi Sankar Ammaiyappan and Seyezhai Ramalingam

The conventional two-level inverter suffers from harmonics, higher direct current (DC) link voltage requirement, higher dv/dt and heating of the rotor. This study aims to overcome…

Abstract

Purpose

The conventional two-level inverter suffers from harmonics, higher direct current (DC) link voltage requirement, higher dv/dt and heating of the rotor. This study aims to overcome by using a multilevel inverter for brushless DC (BLDC) drive.

Design/methodology/approach

This paper presents a comparative analysis of the conventional two-level and three-level multilevel inverter for electric vehicle (EV) application using BLDC drive.

Findings

A three-level Active Neutral Point Clamped Multilevel inverter (ANPCMLI) is proposed in this paper which provides DC link voltage control. Simulation studies of the multilevel inverter and BLDC motor is carried out in MATLAB.

Originality/value

The ANPCMLI fed BLDC simulation results shows that there is the significant reduction in the BLDC motor torque ripple, switching stress and harmonic distortion in the BLDC motor fed ANPCMLI compared to the conventional two-level inverter. A prototype of ANPCMLI fed BLDC drive along with field programmable gate array (FPGA) control is built and MATLAB simulation results are verified experimentally.

Details

Circuit World, vol. 49 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Open Access
Article
Publication date: 6 July 2023

Zakaria Mohamed Salem Elbarbary, Ahmed A. Alaifi, Saad Fahed Alqahtani, Irshad Mohammad Shaik, Sunil Kumar Gupta and Vijayakumar Gali

Switching power converters for photovoltaic (PV) applications with high gain are rapidly expanding. To obtain better voltage gain, low switch stress, low ripple and cost-effective…

926

Abstract

Purpose

Switching power converters for photovoltaic (PV) applications with high gain are rapidly expanding. To obtain better voltage gain, low switch stress, low ripple and cost-effective converters, researchers are developing several topologies.

Design/methodology/approach

It was decided to use the particle swarm optimization approach for this system in order to compute the precise PI controller gain parameters under steady state and dynamic changing circumstances. A high-gain q- ZS boost converter is used as an intermittent converter between a PV and brushless direct current (BLDC) motor to attain maximum power point tracking, which also reduces the torque ripples. A MATLAB/Simulink environment has been used to build and test the positive output quadratic boost high gain converters (PQBHGC)-1, PQBHGC-8, PQBHGC-4 and PQBHGC-3 topologies to analyse their effectiveness in PV-driven BLDC motor applications. The simulation results show that the PQBHGC-3 topology is effective in comparison with other HG cell DC–DC converters in terms of efficiency, reduced ripples, etc. which is most suitable for PV-driven BLDC applications.

Findings

The simulation results have showed that the PQBHGC-3 gives better performance with minimum voltage ripple of 2V and current ripple of 0.4A which eventually reduces the ripples in the torque in a BLDC motor. Also, the efficiency for the suggested PQBHGC-3 for PV-based BLDC applications is the best with 99%.

Originality/value

This study is the first of its kind comparing the different topologies of PQBHGC-1, PQBHGC-8, PQBHGC-4 and PQBHGC-3 topologies to analyse their effectiveness in PV-driven BLDC motor applications. This study suggests that the PQBHGC-3 topology is most suitable in PV-driven BLDC applications.

Details

Frontiers in Engineering and Built Environment, vol. 4 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 8 June 2021

Prathibanandhi Kanagaraj, Ramesh Ramadoss, Yaashuwanth Calpakkam and Adam Raja Basha

The brushless direct current motor (BLDCM) is widely accepted and adopted by many industries instead of direct current motors due to high reliability during operation. Brushless…

Abstract

Purpose

The brushless direct current motor (BLDCM) is widely accepted and adopted by many industries instead of direct current motors due to high reliability during operation. Brushless direct current (BLDC) has outstanding efficiency as losses that arise out of voltage drops at brushes and friction losses are eliminated. The main factor that affects the performance is temperature introduced in the internal copper core windings. The control of motor speed generates high temperature in BLDC operation. The high temperature is due to presence of ripples in the operational current. The purpose is to present an effective controlling mechanism for speed management and to improve the performance of BLDCM to activate effective management of speed.

Design/methodology/approach

The purpose is to present an optimal algorithm based on modified moth-flame optimization algorithm over recurrent neural network (MMFO-RNN) for speed management to improve the performance. The core objective of the presented work is to achieve improvement in performance without affecting the design of the system with no additional circuitry. The management of speed in BLDCM has been achieved through reduction or minimization of ripples encircled with torque of the motor. The implementation ends in two stages, namely, controlling the loop of torque and controlling the loop of speed. The MMFO-RNN starts with error optimization, which arises from both the loops, and most effective values have been achieved through MMFO-RNN protocol.

Findings

The parameters are enriched with Multi Resolution Proportional Integral and Derivative (MRPID) controller operation to achieve minimal ripples for the torque of BLDC and manage the speed of the motor. The performance is increased by adopting this technique approximately 12% in comparison with the existing methodology, which is the main contributions of the presented work. The outcomes are analyzed with the existing methodologies through MATLAB Simulink tool, and the comparative analyses suggest that better performance of the proposed system produces over existing techniques, and proto type model is developed and cross verifies the proposed system.

Originality/value

The MMFO-RNN starts with error optimization, which arises from both the loops, and most effective values have been achieved through MMFO-RNN protocol. The parameters are enriched with MRPID controller operation to achieve nil or minimal ripples and to encircle the torque of Brushless Direct Current and manage the speed.

Details

Circuit World, vol. 48 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 7 November 2016

Jakub Bernat, Slawomir Jan Stepien, Artur Stranz and Paulina Superczynska

Brushless DC (BLDC) motors are commonly used in the industry. The improvement of power switching electronic elements, especially integrated circuits, has led to the development…

Abstract

Purpose

Brushless DC (BLDC) motors are commonly used in the industry. The improvement of power switching electronic elements, especially integrated circuits, has led to the development and improvement of control strategies. The purpose of this paper is to apply the well-known LQR control method for the highly accurate model of the BLDC motor, which is a must for the control system to be optimal and stable.

Design/methodology/approach

The employed distributed parameter finite element motor model uses a state vector which is dependent not only on time but also on space configuration, thus enabling the end-winding effect, cogging torque or magnetic saturation to be taken into account. The adopted infinite horizon linear quadratic-based controller aims at optimally minimizing current control error considering the energy delivered to the motor. For this reason, the relationship between the quadratic forms of the performance index is investigated and the reference currents’ influence on the results was studied. The presented methodology was confirmed with the numerical analysis of the problem.

Findings

It was found how the configuration of the optimal control objective function influences the performance and the stability of the drive system subject to energy delivery minimization. An exact configuration was calculated for which the control error was reasonably small. The applicability of the infinite horizon optimal current control for the BLDC drive applications was proved.

Originality/value

The authors introduced an innovative approach to the well-known control methodology and settled their research in the newest literature coverage for this issue.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 May 2011

Krzysztof Krykowski, Janusz Hetmańczyk, Zbigniew Gałuszkiewicz and Roman Miksiewicz

The purpose of this paper is to elaborate a method of computer analysis of high‐speed motor with specific parameters and verifying the obtained results, i.e. computer models by…

Abstract

Purpose

The purpose of this paper is to elaborate a method of computer analysis of high‐speed motor with specific parameters and verifying the obtained results, i.e. computer models by experimental (laboratory) tests.

Design/methodology/approach

In order to determine motor properties from the viewpoint of energy conversion, a model using FEM was worked out with the help of Maxwell software. To determine static and dynamic properties of both motor and drive, Matlab/Simulink models were used; one of these models was a built‐in (library) model, the other one was proposed by the authors.

Findings

The new analysis method and model of high‐speed motor have been carried out.

Research limitations/implications

The permanent magnet brushless direct current high‐speed motor was the subject of the research. In the first part of the research, the properties of the motor were determined by using finite element method.

Practical implications

The laboratory prototype can be a starting point in establishing the production of the high‐speed motors with rotational speed in the range of 50,000‐100,000 rpm.

Social implications

At this moment, there are several possible application of the high‐speed motor and it should be expected that other new applications can appear in near future after the start of the production.

Originality/value

The paper shows that the computer‐based analysis method determines the motor properties accurately. It is also pointed out that a motor with half‐open slots has advantageous properties. The new simulation model of high‐speed motor has been carried out. This model allows taking into account some imperfections caused by slots and rectangular cross‐section magnets.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 May 2011

Łukasz Knypiński and Lech Nowak

The purpose of this paper is to elaborate a mathematical model of dynamic operation of the permanent magnet brushless DC (BLDC) motor with outer rotor and investigate the…

Abstract

Purpose

The purpose of this paper is to elaborate a mathematical model of dynamic operation of the permanent magnet brushless DC (BLDC) motor with outer rotor and investigate the influence of magnets width on the dynamic parameters.

Design/methodology/approach

The mathematical model of the devices includes: the equation of the electromagnetic field, the electric circuit equations and equation of mechanical motion. In elaborated algorithm, all these equations are coupled – therefore they are solved simultaneously. The numerical implementation is based on finite element method and step‐by‐step algorithm. The non‐linear‐coupled field‐circuit equations have been solved by using the Newton‐Raphson algorithm. The computer code for dynamics simulation of the machine has been developed.

Findings

The elaborated algorithm and the computer code have been applied for the 2D simulation of BLDC motor dynamics. The algorithm has a good convergence and its usefulness was proved. Various results of the analysis are presented and discussed.

Originality/value

The presented approach and computer code can be successfully applied to the design and optimization of different structure of the BLDC motors.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 November 2022

Rajamohana Kuselan and Venkatesan Sundharajan

This study aims to extend the driving range by on-board charging with use of photovoltaic (PV) source, avoiding the dependency on the grid supply and energy storage system in…

Abstract

Purpose

This study aims to extend the driving range by on-board charging with use of photovoltaic (PV) source, avoiding the dependency on the grid supply and energy storage system in addition to that reduce the conversion complexity influenced on converter section of electric vehicle (EV) system.

Design/methodology/approach

This paper proposed a PV fed integrated converter topology called integrated single-input multi-output (I-SIMO) converter with enriched error tolerant fuzzy logic controller (EET-FLC) based control technique to regulate the speed of brushless direct current motor drive. I-SIMO converter provides both direct current (DC) and alternating current (AC) outputs from a single DC input source depending on the operation mode. It comprises two modes of operation, act as DC–DC converter in vehicle standby mode and DC–AC converter in vehicles driving mode.

Findings

The use of PV panels in the vehicle helps to reduce dependence of grid supply as well as vehicle’s batteries. The proposed topology has to remove the multiple power conversion stages in EV system, reduce components count and provide dual outputs for enhancement of performance of EV system.

Originality/value

The proposed topology leads to reduction of switching losses and stresses across the components of the converter and provides reduction in system complexity and overall expenditure. So, it enhances the converter reliability and also improves the efficiency. The converter provides ripple-free output voltage under dynamic load condition. The performance of EET-FLC is studied by taking various performance measures such as rise time, peak time, settling time and peak overshoot and compared with conventional control designs.

Article
Publication date: 5 July 2013

Łukasz Knypiński and Lech Nowak

The purpose of this paper is to elaborate the algorithm and computer code for the structure optimization of the outer rotor permanent magnet brushless DC motor and to execute…

Abstract

Purpose

The purpose of this paper is to elaborate the algorithm and computer code for the structure optimization of the outer rotor permanent magnet brushless DC motor and to execute optimization of selected motor structure using the non‐deterministic procedure.

Design/methodology/approach

The mathematical model of the device includes the electromagnetic field equations with the nonlinearity of the magnetic core taken into account. The numerical implementation is based on the finite element method and stepping procedure. The genetic algorithm has been applied for the optimization. The computer code has been elaborated.

Findings

The elaborated computer software has been applied for the optimization and design of BLDC motors. The elaborated algorithm has been tested and a good convergence has been attained.

Originality/value

The presented approach and computer software can be successfully applied to the design and optimization of different structure of BLDC motors.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 133