Search results

1 – 10 of 68
Article
Publication date: 10 October 2022

Xiongmin Tang, Tianhong Jiang, Weizheng Chen, ZhiHong Lin, Zexin Zhou, Chen Yongquan and Miao Zhang

How to use a simple and classical topology to provide a high-efficiency excitation voltage for dielectric barrier discharge (DBD) loads is one of the primary problems to be solved…

Abstract

Purpose

How to use a simple and classical topology to provide a high-efficiency excitation voltage for dielectric barrier discharge (DBD) loads is one of the primary problems to be solved for DBD application fields.

Design/methodology/approach

To address the issue, a set of modes that can generate a high-efficiency pulse excitation voltage in a full-bridge inverter are adopted. With the set of modes, the unique equivalent circuit of DBD loads and the parasitic parameter of the step-up transformer can be fully used. Based on the set of modes, a control strategy for the full-bridge inverter is designed. To test the performance of the power supply, a simulation model is established and an experimental prototype is made with a DBD excimer lamp.

Findings

The simulation and experimental results show that not only a high-efficiency excitation voltage can be generated for the DBD load, but also the soft switching of all power switch is realized. Besides this, with the set of modes and the proposed control strategy, the inverter can operate in a high frequency. Compared with other types of power supplies, the power supply used in the paper can fully take advantage of the potential of the excimer lamp at the same input power.

Originality/value

This work considers that how to use a simple and classical topology to provide a high-efficiency excitation voltage for DBD loads is one of the primary problems to be solved for DBD application fields.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 3 April 2023

Dangshu Wang, Jiaan Yi, Luwen Song, Xuan Deng, Xinxia Wang and Zhen Dong

This paper aims to solve the problems of large hard switching loss and unclear resonant parameter design in the existing inverter power supply topology.

Abstract

Purpose

This paper aims to solve the problems of large hard switching loss and unclear resonant parameter design in the existing inverter power supply topology.

Design/methodology/approach

This paper proposes a simple and reliable two-stage isolated inverter composed of series quasi-resonant push-pull and external freewheeling diode full-bridge inverter. The power supply topology is analyzed, the topology mode is analyzed, the mathematical model of the converter is established and the DC gain of the converter is deduced. The relationship between the load and the output gain of the resonant tank is presented, a new resonant parameter design method is proposed, and the parameter design of the resonant element of the converter is clarified.

Findings

The resonant components of the converter are designed according to the proposed resonant parameter design method, and the correctness of the method is verified by simulation and the development and testing of a 500 W experimental prototype. After experimental tests, the peak efficiency of the experimental prototype can reach 94%. Because the experimental prototype achieves soft switching, the heat generation of the switch is greatly reduced, so the heavy heat sink is removed, and the volume is reduced by about 30% compared with the traditional power supply, and the total harmonic distortion of the output voltage is about 2%.

Originality/value

The feasibility of the scheme is verified by experiments, which is of great significance for improving the efficiency of the inverter power supply and parameter optimization.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 6 July 2012

Daniele Desideri, Alvise Maschio and Paolo Mattavelli

The purpose of this paper is to investigate the exposure of human workers to low and high frequency electromagnetic fields during operation of GMAW‐P welding machines.

Abstract

Purpose

The purpose of this paper is to investigate the exposure of human workers to low and high frequency electromagnetic fields during operation of GMAW‐P welding machines.

Design/methodology/approach

First, a numerical parametric analysis of the current waveform has been performed in Matlab, with reference to the human exposure; then a simulation model of a full welding system has been implemented in Simulink/Matlab. The effect has been numerically quantified accordingly to European Standards EN 50444 and EN 50445.

Findings

Contributions to human exposure of specific parts of the current waveform have been evaluated. A new numerical implementation of a full welding system has been done.

Practical implications

The paper shows that there could possibly be improvement in the design of current waveforms, with respect to a reduced human exposure of workers to electromagnetic fields.

Originality/value

The paper presents a new numerical tool that can be useful since the design phase of a welding system for the evaluation of human exposure of workers to electromagnetic fields.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2014

Ilhami Colak, Mehmet Demirtas and Ersan Kabalci

– The purpose of this paper is to examine diminish switching losses in a solar energy conversion system in order to utilise the full efficiency of a solar panel.

Abstract

Purpose

The purpose of this paper is to examine diminish switching losses in a solar energy conversion system in order to utilise the full efficiency of a solar panel.

Design/methodology/approach

In this paper, a boost converter and a resonant DC link (RDCL) inverter are controlled by a microcontroller. The maximum power point tracker (MPPT) algorithm implemented for boost converter supplies to track maximum power point of solar panel. The Class D full-bridge resonant inverter (RI) that is considered to be supplied by boost converter is modeled and zero voltage switching operation is performed by controlling the inverter with sinusoidal pulse width modulation (SPWM) control scheme. The control algorithm is managed with a feedback detecting the current of the boost converter and the zero voltage levels of capacitor voltage in the resonant circuit.

Findings

There are several control techniques have been proposed to reduce switching losses and harmonic contents in conventional or RDCL inverters. Solar panels are used in low power applications among other renewable energy sources. By considering that the efficiency parameter of an actual solar panels is around 14∼17 per cent, the switching losses occurred in energy conversion systems causes the efficiency are reduced.

Originality/value

The proposed approach has been decreased the switching power losses owing to resonant DC link inverter while the developed MPPT algorithm provides to generate maximum power. This paper introduces a novel soft switching technique in solar energy applications in order to maximise the possible efficiency.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 March 2018

Tohid Jalilzadeh, Mehrdad Tarafdar Hagh and Mehran Sabahi

This paper aims to propose a new transformer-less inverter structure to reduce the common-mode leakage current in grid-connected photovoltaic (PV) systems.

Abstract

Purpose

This paper aims to propose a new transformer-less inverter structure to reduce the common-mode leakage current in grid-connected photovoltaic (PV) systems.

Design/methodology/approach

The proposed circuit structure is the same as the conventional full-bridge inverter with three additional power switches in a triangular structure. These three power switches are between the bridge and the output filter, and they mitigate the common-mode leakage current flowing toward the PV panels’ capacitors. The common-mode leakage current mitigation is done through the three-direction clamping cell (TDCC) concept. By clamping the common-mode voltage to the middle voltage of the DC-link capacitors, the leakage current and the total harmonic distortion (THD) of the injected current to the grid is effectively reduced. Therefore, the efficiency is improved.

Findings

The switching modes and the control method are introduced. A comparison is carried out between the proposed structure and other solutions in the literature. The proposed topology and its respective control method are simulated by PSCAD/EMTDC software. The simulation results validate the advantages of the presented structure such as clamping the common-mode voltage and reducing leakage current and THD of injected current to the grid.

Originality/value

Presenting a single phase-improved inverter structure with low-leakage current for grid-connected PV power systems represents a significant original contribution to this work. The proposed structure can inject a sinusoidal current with low THD to the AC grid, and the power factor is unity on the AC side. In the half positive cycle, one of the switches in the TDCC is turned off under zero current. Besides, one of the other switches in TDCC is turned on with zero voltage and, therefore, its turn-on switching losses are zero. The efficiency of the proposed topology is high because of the reduction of leakage current and power losses. Accordingly, the presented topology can be a good solution to the leakage current elimination.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 October 2015

Prabhat Chandra Ghosh, Pradip K Sadhu, Debabrata Roy and Soumya Das

This paper investigates the selection of semiconductor switches used in contactless power transfer (CPT) system. In the present paper a single phase high frequency full bridge

Abstract

This paper investigates the selection of semiconductor switches used in contactless power transfer (CPT) system. In the present paper a single phase high frequency full bridge inverter using different semiconductor switches like IGBT, MPOSFET and GTO has been considered. Harmonic injection in input current of the inverter for different semiconductor switches has been analyzed using PSIM software. The THD of input current of the inverter for the particular switching device has been determined by using Fourier Transforms. It has been observed that THD in case of the IGBT is minimised.

Details

World Journal of Engineering, vol. 12 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 October 2014

Qingqing Ma, Baoming Ge, Daqiang Bi, Fernando J.T.E. Ferreira and Aníbal T. de Almeida

The purpose of this paper is to propose a new three-phase switched reluctance motor (SRM), and achieve high-torque and low-cost. This new SRM's winding configuration uses the…

Abstract

Purpose

The purpose of this paper is to propose a new three-phase switched reluctance motor (SRM), and achieve high-torque and low-cost. This new SRM's winding configuration uses the double-layer distributed windings, which is different from the conventional SRM's single tooth coils.

Design/methodology/approach

The operating principle of new SRM is analyzed, and the voltage equation and the generated torque are deduced. Finite element method (FEM) and finite element circuit coupled method are utilized to evaluate the new motor's operating performances. The two dimensional (2D) frequency response analysis model is employed in the FEM model. Based on the 2D frequency response analysis model, the magnetic field distribution, self-inductance, and mutual-inductance for the new SRM are analyzed in detail. A co-simulation model using FE analysis package and Matlab-Simulink is proposed to simulate the new SRM drive. The simulated and experimental results verify the new SRM.

Findings

For the new SRM with double-layer distributed windings, a co-simulation method is proposed to analyze its characteristics. The new SRM presents lower torque ripple coefficient and generates larger torque than the conventional SRM, with three-wire and standard full bridge power converter, rather than six-wire and asymmetric half-bridge converter for conventional SRM.

Originality/value

This paper proposes a new SRM with the double-layer distributed windings driven by a standard full bridge inverter. In order to calculate dynamic characteristics of the new SRM, a co-simulation method using FEM and Simulink is proposed to simulate the new SRM drive, where the power inverter and the current chopping control algorithm are implemented.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 January 2009

Marcin Hołub, Stanisław Kalisiak and Krzysztof Ruchała

The purpose of this paper is to introduce a unique multilevel, one‐phase inverter (in the multiplied full‐bridge configuration, cascaded‐type) with unequal voltage distribution…

Abstract

Purpose

The purpose of this paper is to introduce a unique multilevel, one‐phase inverter (in the multiplied full‐bridge configuration, cascaded‐type) with unequal voltage distribution among the voltage levels.

Design/methodology/approach

Numerical and experimental results are discussed and the topology thereafter evaluated.

Findings

Unequal voltage distribution among voltage stages of the converter leads to increase of the output voltage resolution while simplifying the converter construction and minimizing the power switch losses. Simplorer numerical analyses as well as test stand measurements were led in order to verify properties of the system. Using the voltage distribution in the proportion of 6/2/1 leads to improved utilisation of power switches used in the means of voltage, current and switching frequency. FFT analysis was implemented in order to explore the frequency domain properties of the control apparatus.

Practical implications

The results allow improvement of power switch utilisation and output voltage resolution of cascaded, three‐stage multilevel converter topologies and voltage output filter optimisation for multilevel power electronic converters.

Originality/value

A new concept of voltage distribution is provided and described, a dedicated DSP‐based control system was developed as well as a small‐scale converter prototype, test stand measurement results are provided.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 March 2018

Mohammad Maalandish, Seyed Hossein Hosseini, Mehran Sabahi and Pouyan Asgharian

The main purpose of this paper is to select appropriate voltage vectors in the switching techniques and, by selecting the proper voltage vectors, be able to achieve a DC link with…

Abstract

Purpose

The main purpose of this paper is to select appropriate voltage vectors in the switching techniques and, by selecting the proper voltage vectors, be able to achieve a DC link with the same outputs and a symmetric multi-level inverter.

Design/methodology/approach

The proposed structure, a two-stage DC–AC symmetric multi-level inverter with modified Model Predictive Control (MMPC) method, is presented for Photovoltaic (PV) applications. The voltage of DC-link capacitors of the boost converter is controlled by MMPC control method to select appropriate switching vectors for the multi-level inverter. The proposed structure is provided for single-phase power system, which increases 65 V input voltage to 220 V/50 Hz output voltage, with 400 V DC link. Simulation results of proposed structure with MMPC method are carried out by PSCAD/EMTDC software.

Findings

Based on the proposed structure and control method, total harmonic distortion (THD) reduces, which leads to lower power losses and higher circuit reliability. In addition, reducing the number of active switches in current path causes to lower voltage stress on the switches, lower PV leakage current and higher overall efficiency.

Originality/value

In the proposed structure, a new control method is presented that can make a symmetric five-level voltage with lower THD by selecting proper switching for PV applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 January 2015

Mounir Bouzguenda, Tarek Selmi, Adel Gastli and Ahmed Masmoudi

The purpose of this paper is to study the problem of the leakage currents in transformerless inverter topologies. It proposes a novel topology and how important the adopted…

Abstract

Purpose

The purpose of this paper is to study the problem of the leakage currents in transformerless inverter topologies. It proposes a novel topology and how important the adopted control strategy on the power quality produced by the inverter.

Design/methodology/approach

The paper presents an investigation of a novel transformerless inverter topology. It adopted a control strategy in which the DC source is disconnected from the inverter when the zero vectors of the control are applied. By using such control strategy, the electrical efficiency of the whole system was improved and the leakage current was significantly reduced.

Findings

The paper provides a solution to minimize the leakage current in transformerless inverter topologies. Besides, the problem of zero-crossing distortions was totally eliminated.

Research limitations/implications

Because of the high conversion ratio of the boost converter, the efficiency of the whole system needs to be enhanced.

Practical implications

The paper includes the experimental results of the proposed topology which are in good match with the simulation results.

Originality/value

This paper identifies a need to study the leakage current phenomena in transformerless inverter topologies.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 68