Search results

1 – 10 of 11
Article
Publication date: 9 August 2024

Juanyan Miao, Yiwen Li, Siyu Zhang, Honglei Zhao, Wenfeng Zou, Chenhe Chang and Yunlong Chang

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for…

Abstract

Purpose

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for welding technology, so the optimization and improvement of traditional welding methods become urgent needs.

Design/methodology/approach

External magnetic field assisted welding is an emerging technology in recent years, acting in a non-contact manner on the welding. The action of electromagnetic forces on the arc plasma leads to significant changes in the arc behavior, which affects the droplet transfer and molten pool formation and ultimately improve the weld seam formation and joint quality.

Findings

In this paper, different types of external magnetic fields are analyzed and summarized, which mainly include external transverse magnetic field, external longitudinal magnetic field and external cusp magnetic field. The research progress of welding behavior under the effect of external magnetic field is described, including the effect of external magnetic field on arc morphology, droplet transfer and weld seam formation law.

Originality/value

However, due to the extremely complex physical processes under the action of the external magnetic field, the mechanism of physical fields such as heat, force and electromagnetism in the welding has not been thoroughly analyzed, in-depth theoretical and numerical studies become urgent.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 May 2024

Shengjian Zhang, Min Li, Baoyi Li, Hansen Zhao and Feng Wang

To improve the corrosion resistance of magnesium alloys, the construction of protective coatings is necessary to extend the service life of Mg-based materials.

Abstract

Purpose

To improve the corrosion resistance of magnesium alloys, the construction of protective coatings is necessary to extend the service life of Mg-based materials.

Design/methodology/approach

SiO2 nanoparticles modified by dodecyltrimethoxysilane (DTMS) were added to the PP and a superhydrophobic Mg(OH)2/PP-60mSiO2 composite coating was fabricated on the surface of AZ31 magnesium alloy via the hydrothermal method and subsequently the immersion treatment.

Findings

Hydrophilic SiO2 nanoparticles become hydrophobic after modified by DTMS, showing a higher dispersibility in xylene. By incorporating modified SiO2 nanoparticles into the composite PP coating, the hydrophobicity of the layer was enhanced, resulting in a contact angle of 166.3° and a sliding angle of 3.4°. It also improved the water repellency and durability of the coating. Furthermore, the intermediate layer of Mg(OH)2 significantly strengthened the bond between the PP layer and the substrate. The Mg(OH)2/PP-60mSiO2 composite coating significantly enhances the corrosion resistance of the magnesium alloy by effectively blocking the infiltration of the corrosion anions during corrosion. The corrosion current density of the Mg(OH)2/PP-60mSiO2 composite coating is approximately 8.23 × 10–9 A·cm-2, which can achieve a magnitude three times lower than its substrate, making it a promising surface modification for the Mg alloy.

Originality/value

The composite coating effectively and durably enhances the corrosion resistance of magnesium alloys.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 July 2024

Md Helal Miah, Dharmahinder Singh Chand, Gurmail Singh Malhi and Gongdong Wang

Regarding the broadening of the titanium alloy application field, the surface treatment coating of TC4 alloy has become an essential global research topic. This study aims to…

Abstract

Purpose

Regarding the broadening of the titanium alloy application field, the surface treatment coating of TC4 alloy has become an essential global research topic. This study aims to illustrate the titanium-based composite coating is created by laser cladding TC4+Ni60/hBN composite powder onto the surface of the TC4 alloy.

Design/methodology/approach

Different laser scanning speeds were initially selected to prepare TC4+Ni60/hBN titanium-based composite coating on the surface of TC4 alloy using RFL-C1000 Raycus fiber laser. Second, the cladding layers with different laser scanning speeds are composed of Ti2Ni, TiN0.3, TiC, TiB, α-Ti and other phases. Finally, precision balances, friction and wear testing machines were used to analyze and test the structure, phase, hardness, wear amount and friction coefficient of the composite coating and to study the effect of laser scanning speed on the microstructure and properties of the titanium-based composite coating.

Findings

It is evident that at the low laser scanning speed, the reinforcing phase agglomeration area is distributed in the substrate as a network. Increasing the laser scanning speed can reduce the cladding layer's friction coefficient and improve the cladding layer's hardness and wear resistance. But too high a laser scanning speed will cause defects such as pores and cracks in the cladding layer and also affect the cladding layer. The bonding performance of the layer and the substrate is optimal in this research at a laser scanning speed of 10 mm/s.

Originality/value

This research has practical value in improving the quality of surface treatment coating in modern aerospace and automotive companies.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 July 2024

Mengxia Jiang, Yang Liu, Yuxiong Xue, Guangbao Shan, Jun Lv and Mairui Huang

This paper aims to systematically study the effects of reflow temperature and SAC0307 (SAC) content on the micromorphology and mechanical properties of Sn58Bi-xSAC0307 composite…

Abstract

Purpose

This paper aims to systematically study the effects of reflow temperature and SAC0307 (SAC) content on the micromorphology and mechanical properties of Sn58Bi-xSAC0307 composite solder joints to meet the requirements of high integration and low-temperature packaging of devices and provide references for the application of composite solder joints.

Design/methodology/approach

Sn58Bi and SAC0307 solder paste was mechanically mixed in different proportions to prepare Sn58Bi-xSAC0307/ENIG solder joints. The thermal properties, microstructure and mechanical properties of the composite solder joints were studied.

Findings

As SAC content in the solder increases, the balling temperature of SnBi-SAC solder gradually increases. The addition of SAC alloy reduces the grain size of large Bi-rich phase, and there are small-sized dispersed Bi and Ag3Sn particles in the bulk solder. The intermetallic compounds composition of the SnBi-xSAC/ENIG solder joint changes from Ni3Sn4 to (Ni, Cu)3Sn4 and (Cu, Ni)6Sn5 with SAC increasing. As the soldering temperature increases, the strength of all solder joints shows a rising trend. Among them, the shear strength of SnBi-20SAC solder joints at a reflow temperature of 150°C is approximately 37 MPa. As the reflow temperature increases to 250°C, the shear strength of solder joints increases to approximately 67 MPa.

Originality/value

This study provides a reference for the optimization of low-temperature solder composition and soldering process under different package designs.

Details

Soldering & Surface Mount Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 9 July 2024

Adrian Pietruszka, Paweł Górecki and Agata Skwarek

This paper aims to investigate the influence of composite solder joint preparation on the thermal properties of metal-oxide-semiconductor field-effect transistors (MOSFETs) and…

Abstract

Purpose

This paper aims to investigate the influence of composite solder joint preparation on the thermal properties of metal-oxide-semiconductor field-effect transistors (MOSFETs) and the mechanical strength of the soldered joint.

Design/methodology/approach

Reinforced composite solder joints with the addition of titanium oxide nanopowder (TiO2) were prepared. The reference alloy was Sn99Ag0.3Cu0.7. Reinforced joints differed in the weight percentage of TiO2, ranging from 0.125 to 1.0 Wt.%. Two types of components were used for the tests. The resistor in the 0805 package was used for mechanical strength tests, where the component was soldered to the FR4 substrate. For thermal parameters measurements, a power element MOSFET in a TO-263 package was used, which was soldered to a metal core printed circuit board (PCB) substrate. Components were soldered in batch IR oven.

Findings

Shear tests showed that the addition of titanium oxide does not significantly increase the resistance of the solder joint to mechanical damage. Titanium oxide addition was shown to not considerably influence the soldered joint’s mechanical strength compared to reference samples when soldered in batch ovens. Thermal resistance Rthj-a of MOSFETs depends on TiO2 concentration in the composite solder joint reaching the minimum Rthj at 0.25 Wt.% of TiO2.

Research limitations/implications

Mechanical strength: TiO2 reinforcement shows minimal impact on mechanical strength, suggesting altered liquidus temperature and microstructure, requiring further investigation. Thermal performance: thermal parameters vary with TiO2 concentration, with optimal performance at 0.25 Wt.%. Experimental validation is crucial for practical application. Experimental confirmation: validation of optimal concentrations is essential for accurate assessment and real-world application. Soldering method influence: batch oven soldering may affect mechanical strength, necessitating exploration of alternative methods. Thermal vs mechanical enhancement: while TiO2 does not notably enhance mechanical strength, it improves thermal properties, highlighting the need for balanced design in power semiconductor assembly.

Practical implications

Incorporating TiO2 enhances thermal properties in power semiconductor assembly. Optimal concentration balancing thermal performance and mechanical strength must be determined experimentally. Batch oven soldering may influence mechanical strength, requiring evaluation of alternative techniques. TiO2 composite solder joints offer promise in power electronics for efficient heat dissipation. Microstructural analysis can optimize solder joint design and performance. Rigorous quality control during soldering ensures consistent thermal performance and mitigates negative effects on mechanical strength.

Social implications

The integration of TiO2 reinforcement in solder joints impacts thermal properties crucial for power semiconductor assembly. However, its influence on mechanical strength is limited, potentially affecting product reliability. Understanding these effects necessitates collaborative efforts between researchers and industry stakeholders to develop robust soldering techniques. Ensuring optimal TiO2 concentration through experimental validation is essential to maintain product integrity and safety standards. Additionally, dissemination of research findings and best practices can empower manufacturers to make informed decisions, fostering innovation and sustainability in electronic manufacturing processes. Ultimately, addressing these social implications promotes technological advancement while prioritizing consumer trust and product quality in the electronics industry.

Originality/value

The research shows the importance of the soldering technology used to assemble MOSFET devices.

Details

Soldering & Surface Mount Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 31 July 2024

Lina Syazwana Kamaruzzaman, Yingxin Goh and Yi Chung Goh

This study aims to investigate the effect of incorporating cobalt (Co) into Sn-58Bi alloy on its phase composition, tensile properties, hardness and thermal aging performances…

Abstract

Purpose

This study aims to investigate the effect of incorporating cobalt (Co) into Sn-58Bi alloy on its phase composition, tensile properties, hardness and thermal aging performances. The fracture morphologies of tensile-tested solders are also investigated to correlate the microstructural changes with tensile properties of the solder alloys. Then, the thermal aging performances of the solder alloys are investigated in terms of their intermetallic compound (IMC) layer morphology and thickness.

Design/methodology/approach

The Sn-58Bi and Sn-58Bi-xCo, where x = 1.0, 1.5 and 2.0 Wt.%, were prepared using the flux doping technique. X-ray diffraction (XRD) is used to study the phase composition of the solder alloys, whereas scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) are used to investigate the microstructure, fractography and compositions of the solders. Tensile properties such as ultimate tensile strength (UTS), Young’s modulus and elongation are tested using the tensile test, whereas the microhardness value is gained from the micro-Vickers hardness test. The morphology and thickness of the IMC layer at the solder’s joints are investigated by varying the thermally aging duration up to 56 days at 80°C.

Findings

XRD analysis shows the presence of Co3Sn2 phase and confirms that Co was successfully incorporated via the flux doping technique. The microstructure of all Sn-58Bi-xCo solders did not differ significantly from Sn-58Bi solders. Sn-58Bi-2.0Co solder exhibited optimum properties among all compositions, with the highest UTS (87.89 ± 2.55 MPa) at 0.01 s−1 strain rate and the lowest IMC layer thickness at the interface after being thermally aged for 56 days (3.84 ± 0.67 µm).

Originality/value

The originality and value of this research lie in its novel exploration of the flux doping technique to introduce minor alloying of Co into Sn-58Bi solder alloys, providing new insights into enhancing the properties and performance of these solders. This new Sn-Bi-Co alloy has the potential to replace lead-containing solder alloy in low-temperature soldering.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 30 July 2024

Abhishek Kumar Sharma and Shaligram Tiwari

This paper aims to carry out numerical study on growth of a single bubble from a curved hydrophilic surface, in nucleate pool boiling (NPB). The boiling performance associated…

Abstract

Purpose

This paper aims to carry out numerical study on growth of a single bubble from a curved hydrophilic surface, in nucleate pool boiling (NPB). The boiling performance associated with NPB on a curved surface has been analyzed in contrast to a plane surface.

Design/methodology/approach

Commercial software ANSYS Fluent 2021 R1 has been used with its built-in feature of interface tracking based on volume of fluid method. For water as the working fluid, the effect of microlayer evaporation underneath the bubble base has been included with the help of user-defined function. The phase change behavior at the interface of vapor bubble has been modeled by using “saturated-interface-volume” phase change model.

Findings

An interesting outcome of the present study is that the bubble departure gets delayed with increase in curvature of the heating surface. Wall heat flux is found to be higher for a curved surface as compared to a plane surface. Effect of wettability on the time for bubble growth is relatively more for the curved surface as compared to that for a plane surface.

Originality/value

Effect of surface curvature has been investigated on bubble dynamics and also on temporal variation of heat flux. In addition, the impact of surface wettability along with the surface curvature has also been analyzed on bubble morphology and spatial variation of heat flux. Furthermore, the influence of wall superheat on the bubble growth and also the wall heat flux has been studied for fixed angle of contact and varying curvature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 September 2024

Abhishek Shrivastava, Anand Kumar S. and Samrat Rao

This study used an indentation-based mechanical testing framework for the mechanical characterization of laser powder bed fusion (LPBF) processed Inconel 718 on a wrought Inconel…

Abstract

Purpose

This study used an indentation-based mechanical testing framework for the mechanical characterization of laser powder bed fusion (LPBF) processed Inconel 718 on a wrought Inconel 718 substrate. The purpose of the paper is to investigate the effectiveness of the indentation-based approach for localized mechanical evaluation.

Design/methodology/approach

The LPBF-processed wrought substrate was sectioned into three sections for microstructural and mechanical characterization. A 3D heat source model was used for the thermal analysis of the interface region. The developed interface region is probed using the Knoop hardness indenter in different orientations to determine the textural anisotropy and mechanical behavior of the region.

Findings

LPBF process develops a melted interface zone (MIZ) at the deposition-substrate interface. The MIZ exhibited a coarse grain structure region along with a larger primary dendritic arm spacing (PDAS), signifying a slower cooling rate. FE modeling of the LPBF process reveals heat accumulation in the substrate along with intrinsic heat treatment (IHT) induced due to layer-wise processing. The obtained yield locus shows strong anisotropy in the deposition region, whereas reduced anisotropy with a nearly uniform ellipse locus for the MIZ regions. This reduced anisotropy is attributable to IHT and heat accumulation in the substrate.

Originality/value

An alternative localized mechanical characterization tool has been investigated in this work. The approach proved sensitive to thermal variations during LPBF processing in an isolated region which extends its suitability to variable geometry parts. Moreover, the approach could serve as a screening tool for parts made from dissimilar metals.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 August 2024

Jiacheng Zhou, Jinglin Shi, Lei Xu, Fuwen Zhang, Zhigang Wang, Qiang Hu and Huijun He

The reliability of solder joints is closely related to the growth of an intermetallic compound (IMC) layer between the lead-free solder and substrate interface. This paper aims to…

Abstract

Purpose

The reliability of solder joints is closely related to the growth of an intermetallic compound (IMC) layer between the lead-free solder and substrate interface. This paper aims to investigate the growth behavior of the interfacial IMC layer during isothermal aging at 125°C for Sn-3Ag-3Sb-xIn/Cu (x = 0, 1, 2, 3, 4, 5 Wt.%) solder joints with different In contents and commercial Sn-3Ag-0.5Cu/Cu solder joints.

Design/methodology/approach

In this paper, Sn-3Ag-3Sb-xIn/Cu (x = 0, 1, 2, 3, 4, 5 Wt.%) and commercial Sn-3Ag-0.5Cu/Cu solder were prepared for bonding Cu substrate. Then these samples were subjected to isothermal aging for 0, 2, 8, 14, 25 and 45 days. Scanning electron microscopy and transmission electron microscopy were used to analyze the soldering interface reaction and the difference in IMC growth behavior during the isothermal aging process.

Findings

When the concentration of In in the Sn-3Ag-3Sb-xIn/Cu solder joints exceeded 2 Wt.%, a substantial amount of InSb particles were produced. These particles acted as a diffusion barrier, impeding the growth of the IMC layer at the interface. The growth of the Cu3Sn layer during the aging process was strongly correlated with the presence of In. The growth rate of the Cu3Sn layer was significantly reduced when the In concentration exceeded 3 Wt.%.

Originality/value

The addition of In promotes the formation of InSb particles in Sn-3Ag-3Sb-xIn/Cu solder joints. These particles limit the growth of the total IMC layer, while a higher In content also slows the growth of the Cu3Sn layer. This study is significant for designing alloy compositions for new high-reliability solders.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 29 March 2024

Pratheek Suresh and Balaji Chakravarthy

As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a…

Abstract

Purpose

As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a dielectric fluid, has emerged as a promising alternative. Ensuring reliable operations in data centre applications requires the development of an effective control framework for immersion cooling systems, which necessitates the prediction of server temperature. While deep learning-based temperature prediction models have shown effectiveness, further enhancement is needed to improve their prediction accuracy. This study aims to develop a temperature prediction model using Long Short-Term Memory (LSTM) Networks based on recursive encoder-decoder architecture.

Design/methodology/approach

This paper explores the use of deep learning algorithms to predict the temperature of a heater in a two-phase immersion-cooled system using NOVEC 7100. The performance of recursive-long short-term memory-encoder-decoder (R-LSTM-ED), recursive-convolutional neural network-LSTM (R-CNN-LSTM) and R-LSTM approaches are compared using mean absolute error, root mean square error, mean absolute percentage error and coefficient of determination (R2) as performance metrics. The impact of window size, sampling period and noise within training data on the performance of the model is investigated.

Findings

The R-LSTM-ED consistently outperforms the R-LSTM model by 6%, 15.8% and 12.5%, and R-CNN-LSTM model by 4%, 11% and 12.3% in all forecast ranges of 10, 30 and 60 s, respectively, averaged across all the workloads considered in the study. The optimum sampling period based on the study is found to be 2 s and the window size to be 60 s. The performance of the model deteriorates significantly as the noise level reaches 10%.

Research limitations/implications

The proposed models are currently trained on data collected from an experimental setup simulating data centre loads. Future research should seek to extend the applicability of the models by incorporating time series data from immersion-cooled servers.

Originality/value

The proposed multivariate-recursive-prediction models are trained and tested by using real Data Centre workload traces applied to the immersion-cooled system developed in the laboratory.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 11