Search results

1 – 10 of 335
Open Access
Article
Publication date: 30 July 2024

Ning Qian, Muhammad Jamil, Wenfeng Ding, Yucan Fu and Jiuhua Xu

This paper is supposed to provide a critical review of current research progress on thermal management in grinding of superalloys, and future directions and challenges. By…

Abstract

Purpose

This paper is supposed to provide a critical review of current research progress on thermal management in grinding of superalloys, and future directions and challenges. By understanding the current progress and identifying the developing directions, thermal management can be achieved in the grinding of superalloys to significantly improve the grinding quality and efficiency.

Design/methodology/approach

The relevant literature is collected from Web of Science, Scopus, CNKI, Google scholar, etc. A total of 185 literature is analyzed, and the findings in the literature are systematically summarized. In this case, the current development and future trends of thermal management in grinding of superalloys can be concluded.

Findings

The recent developments in grinding superalloys, demands, challenges and solutions are analyzed. The theoretical basis of thermal management in grinding, the grinding heat partition analysis, is also summarized. The novel methods and technologies for thermal management are developed and reviewed, i.e. new grinding technologies and parameter optimization, super abrasive grinding wheel technologies, improved lubrication, highly efficient coolant delivery and enhanced heat transfer by passive thermal devices. Finally, the future trends and challenges are identified.

Originality/value

Superalloys have excellent physical and mechanical properties, e.g. high thermal stability, and good high-temperature strength. The superalloys have been broadly applied in the aerospace, energy and automobile industries. Grinding is one of the most important precision machining technologies for superalloy parts. Owing to the mechanical and physical properties of superalloys, during grinding processes, forces are large and a massive heat is generated. Consequently, the improvement of grinding quality and efficiency is limited. It is important to conduct thermal management in the grinding of superalloys to decrease grinding forces and heat generation. The grinding heat is also dissipated in time by enhanced heat transfer methods. Therefore, it is necessary and valuable to holistically review the current situation of thermal management in grinding of superalloys and also provide the development trends and challenges.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 5 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 17 October 2017

Hilary Bambrick

The extraction of natural resources has long been part of economic development in small islands. The damage to environment and health is extensive, even rendering once productive…

6135

Abstract

Purpose

The extraction of natural resources has long been part of economic development in small islands. The damage to environment and health is extensive, even rendering once productive islands virtually uninhabitable. Rather than providing long-term benefits to the population or to the environment, the culture of “extractivism” – a nonreciprocal approach where resources are removed and used with little care or regard to consequences – has instead left many in far more fragile circumstances, increasingly dependent on external income. The purpose of this paper is to show how continued extractivism in small islands is contributing to global climate change and increasing climate risks to the local communities.

Design/methodology/approach

Through a series of case studies, this paper examines the history of extractivism in small islands in Oceania, its contribution to environmental degradation locally and its impacts on health.

Findings

It examines how extractivism continues today, with local impacts on environment, health and wellbeing and its much more far-reaching consequences for global climate change and human health. At the same time, these island countries have heightened sensitivity to climate change due to their isolation, poverty and already variable climate, whereas the damage to natural resources, the disruption, economic dependence and adverse health impacts caused by extractivism impart reduced resilience to the new climate hazards in those communities.

Practical implications

This paper proposes alternatives to resource extractivism with options for climate compatible development in small islands that are health-promoting and build community resilience in the face of increasing threats from climate change.

Originality/value

Extractivism is a new concept that has not previously been applied to understanding health implications of resource exploitation thorough the conduit of climate change. Small-island countries are simultaneously exposed to widespread extractivism, including of materials contributing to global climate change, and are among the most vulnerable to the hazards that climate change brings.

Details

International Journal of Climate Change Strategies and Management, vol. 10 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 23 August 2024

Mauricio Soto Rubio, Muhammad Fauzan Mirza, Mustafa Kagdi and Ahmad Ali Bisati

This research explores the role of concrete 3D printing (C3DP) in the development of culturally appropriate housing in Indigenous Reserves in Canada through the design, building…

Abstract

Purpose

This research explores the role of concrete 3D printing (C3DP) in the development of culturally appropriate housing in Indigenous Reserves in Canada through the design, building and evaluation of the Star Lodge project located in the Siksika Nation of Alberta, Canada. The project aims to assess the potential of C3DP in addressing the escalating housing demands in Indigenous communities in Canada.

Design/methodology/approach

The research involved a collaborative and multidisciplinary approach, engaging Blackfoot Elders, Knowledge Keepers from the Siksika Nation, Siksika Housing and Nidus3D. Central to this was the design, build and documentation of the Star Lodge project to analyse the advantages and challenges, guided by weekly meetings and site visits.

Findings

The project harnessed C3DP to streamline construction, enhance durability, reduce maintenance costs and enhance the energy performance of the homes. Notable time savings were achieved compared to conventional construction methods. Challenges included developing strategies to overcome extreme cold weather conditions, achieving a consistent concrete mix and integrating conventional construction elements such as drywall construction in interiors. The project served as a platform for collaboration and community participation, shaping the design and construction process while raising awareness of innovative construction techniques in the community.

Originality/value

This study provides an evidence-based framework for the evaluation of C3DP technology by analysing the Star Lodge Project, the first C3DP project in Alberta and the largest of its kind in Canada. By addressing housing challenges in Indigenous communities, the research holds broader implications for sustainable development and Indigenous empowerment across Canada.

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 27 November 2020

Huong Thi Lan Huynh, Lieu Nguyen Thi and Nguyen Dinh Hoang

This study aims to evaluate the impact of climate change on some specific areas of agricultural production in Quang Nam Province, including assessing the possibility of losing…

4453

Abstract

Purpose

This study aims to evaluate the impact of climate change on some specific areas of agricultural production in Quang Nam Province, including assessing the possibility of losing agricultural land owing to sea level rise; assessing the impact on rice productivity; and, assessing the impact on crop water demand.

Design/methodology/approach

This study used the method of collecting and processing statistics data; method of analysis, comparison and evaluation; method of geographic information system; method of using mathematical model; and method of professional solution, to assess the impacts of climate change.

Findings

Evaluation results in Quang Nam Province show that, by the end of the 21st century, winter–spring rice productivity may decrease by 33%, while summer–autumn rice productivity may decrease by 49%. Under representative concentration pathway (RCP) 4.5 scenario, water demand increases by 31.1% compared to the baseline period, of which the winter–spring crop increases by 28.4%, and the summer–autumn crop increased by 34.3%. Under RCP 8.5 scenario, water demand increases by 54.1% compared to the baseline period, of which the winter–spring crop increases by 46.7%, and the summer–autumn crop increased by 63.1%. The area of agricultural land likely to be inundated by sea level rise at 50 cm is 418.32 ha, and at 80 cm, it is 637.07 ha.

Originality/value

To propose adaptation solution to avoid the impacts of climate change on agriculture, it is necessary to consider about the impact on losing land for agriculture, the impact on rice productivity, assess the impact on crop water demand and other. The result of this assessment is useful for policymakers for forming the agriculture development plan.

Details

International Journal of Climate Change Strategies and Management, vol. 12 no. 5
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 11 January 2023

Xiaobing Huang, Yousaf Ali Khan, Noman Arshed, Sultan Salem, Muhammad Ghulam Shabeer and Uzma Hanif

Social development is the ultimate goal of every nation, and climate change is a major stumbling block. Climate Risk Index has documented several climate change events with their…

1405

Abstract

Purpose

Social development is the ultimate goal of every nation, and climate change is a major stumbling block. Climate Risk Index has documented several climate change events with their devastations in terms of lives lost and economic cost. This study aims to link the climate change and renewable energy with the social progress of extreme climate affected countries.

Design/methodology/approach

This research used the top 50 most climate-affected countries of the decade and estimated the impact of climate risk on social progress with moderation effects of renewable energy and technology. Several competing panel data models such as quantile regression, bootstrap quantile regression and feasible generalized least square are used to generate robust estimates.

Findings

The results confirm that climate hazards obstruct socioeconomic progress, but renewable energy and technology can help to mitigate the repercussion. Moreover, improved institutions enhance the social progress of nations.

Research limitations/implications

Government should improve the institutional quality that enhances their performance in terms of Voice and Accountability, Political Stability and Absence of Violence, Government Effectiveness, Regulatory Quality, Rule of Law and Control of Corruption to increase social progress. In addition, society should use renewable energy instead of fossil fuels to avoid environmental degradation and health hazards. Innovation and technology also play an important role in social progress and living standards, so there should be free hand to private business research and development, encouraging research institutes and universities to come forward for innovation and research.

Practical implications

The ultimate goal of all human struggle is to have progress that facilitates human beings to uplift their living standard. One of the best measures that can tell us about a nation’s progress is Social Progress Index (SPI), and one of many factors that can abruptly change it is the climate; so this study is an attempt to link the relationship among these variables and also discuss the situation where the impact of climate can be reduced.

Social implications

Although social progress is an important concept of today’s economics discussion, relatively few studies are using the SPI to measure social well-being. Similarly, there is consensus about the impact of climate on people, government and crops but relatively less study about its overall impact on social progress, so this study attempts to fill the gap about the relationship between social progress and climate change.

Originality/value

The main contribution of this study is the solution for the impact of climate risk. Climate risk is not in human control, and we cannot eliminate it, but we can reduce the negative impacts of climate change. Moderator impact of renewable energy decreases the negative impact of climate change, so there is a need to use more renewable energy to mitigate the bad consequences of climate on social progress. Another moderator is technology; using technology will also mitigate the negative consequences of the climate, so there is a need to facilitate technological advancement.

Details

International Journal of Climate Change Strategies and Management, vol. 15 no. 3
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 24 October 2018

Sunil Tankha, Sunita Ranabhat, Laxmi Dutt Bhatta, Rucha Ghate and Nand Kishor Agrawal

Developed countries agreed at COP15 to pay US$100bn annually for adaptation and mitigation in developing countries. This paper aims to evaluate how prepared are donors and…

1787

Abstract

Purpose

Developed countries agreed at COP15 to pay US$100bn annually for adaptation and mitigation in developing countries. This paper aims to evaluate how prepared are donors and recipients to spend this money well by analyzing institutional and organizational capabilities for climate change adaptation in least developed country (LDC) administrations using the case of Nepal, a country which can be considered to be an archetypal LDC.

Design/methodology/approach

The authors conducted over 100 in-depth structured qualitative interviews with government officials from across the organizational chain in the ministries concerned with climate change, ranging from the lowest-ranked employee to just under the ministerial ranks. This was supplemented with detailed surveys of three representative communities from different ecological zones in Nepal. Data were analyzed using Ostrom’s IAD framework.

Findings

Local administrations are more motivated and capable than are given credit for by donors but nevertheless face critical barriers in being able to function autonomously and confront climate change challenges. These barriers create three interrelated challenges: An organizational challenge to create intrinsic incentives which empower and grant autonomy to front line agents, an institutional challenge to go beyond accountability-focused process validation and a policy-choice challenge which avoids the temptation to write aspirational policies without clear and feasible strategies to obtain the resources necessary for their implementation.

Practical implications

The findings point to ways climate assistance can be restructured for more reach and effectiveness.

Originality/value

This paper fills a gap in the literature because community structures and institutions have been extensively analyzed in the context of adaptation, but despite being criticized, administrative structures have rarely been directly studied.

Details

International Journal of Climate Change Strategies and Management, vol. 11 no. 3
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 2 December 2021

Roberto Felicetti

This study aims to develop an assessment strategy for fire damaged infrastructures based on the implementation of quick diagnostic techniques and consistent interpretation…

Abstract

Purpose

This study aims to develop an assessment strategy for fire damaged infrastructures based on the implementation of quick diagnostic techniques and consistent interpretation procedures, so to determine the residual safety margin and any need for repair works.

Design/methodology/approach

In this perspective, several tailored non-destructive test (NDT) methods have been developed in the past two decades, providing immediate results, with no need for time-consuming laboratory analyses. Moreover, matching their indications with the calculated effects of a tentative fire scenario allows harmonizing distinct pieces of evidence in the coherent physical framework of fire dynamics and heat transfer.

Findings

This approach was followed in the investigations on a concrete overpass in Verona (Italy) after a coach violently impacted one supporting pillar and caught fire in 2017. Technical specifications of the vehicle made it possible to bound the acceptable ranges for fire load and maximum rate of heat release, while surveillance video footage indicated the duration of the burning stage. Some established NDT methods (evaluation of discolouration, de-hydroxylation and rebar hardness) were implemented, together with advanced ultrasonic tests based on pulse refraction and pulse-echo tomography.

Originality/value

The results clearly showed the extension of the most damaged area at the intrados of the box girders and validated the maximum heating depth, as predicted by numerical analysis of the heat transient ensuing from the localized fire model.

Details

Journal of Structural Fire Engineering, vol. 13 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 28 June 2024

Ebere Donatus Okonta and Farzad Rahimian

The purpose of this study is to investigate and analyse the potential of existing buildings in the UK to contribute to the net-zero emissions target. Specifically, it aims to…

Abstract

Purpose

The purpose of this study is to investigate and analyse the potential of existing buildings in the UK to contribute to the net-zero emissions target. Specifically, it aims to address the significant emissions from building fabrics which pose a threat to achieving these targets if not properly addressed.

Design/methodology/approach

The study, based on a literature review and ten (10) case studies, explored five investigative approaches for evaluating building fabric: thermal imaging, in situ U-value testing, airtightness testing, energy assessment and condensation risk analysis. Cross-case analysis was used to evaluate both case studies using each approach. These methodologies were pivotal in assessing buildings’ existing condition and energy consumption and contributing to the UK’s net-zero ambitions.

Findings

Findings reveal that incorporating the earlier approaches into the building fabric showed great benefits. Significant temperature regulation issues were identified, energy consumption decreased by 15% after improvements, poor insulation and artistry quality affected the U-values of buildings. Implementing retrofits such as solar panels, air vents, insulation, heat recovery and air-sourced heat pumps significantly improved thermal performance while reducing energy consumption. Pulse technology proved effective in measuring airtightness, even in extremely airtight houses, and high airflow and moisture management were essential in preserving historic building fabric.

Originality/value

The research stresses the need to understand investigative approaches’ strengths, limitations and synergies for cost-effective energy performance strategies. It emphasizes the urgency of eliminating carbon dioxide (CO2) and greenhouse gas emissions to combat global warming and meet the 1.5° C threshold.

Details

Urbanization, Sustainability and Society, vol. 1 no. 1
Type: Research Article
ISSN: 2976-8993

Keywords

Open Access
Article
Publication date: 2 July 2024

Qinglong An, Chenguang Wang, Tai Ma, Fan Zou, Zhilei Fan, Entao Zhou, Ende Ge and Ming Chen

Bolted joint is the most important connection method in aircraft composite/metal stacked connections due to its large load transfer capacity and high manufacturing reliability…

Abstract

Purpose

Bolted joint is the most important connection method in aircraft composite/metal stacked connections due to its large load transfer capacity and high manufacturing reliability. Aircraft components are subjected to complex hybrid variable loads during service, and the mechanical properties of composite/metal bolted joint directly affect the overall safety of aircraft structures. Research on composite/metal bolted joint and their mechanical properties has also become a topic of general interests. This article reviews the current research status of aeronautical composite/metal bolted joint and its mechanical properties and looks forward to future research directions.

Design/methodology/approach

This article reviews the research progress on static strength failure and fatigue failure of composite/metal bolted joint, focusing on exploring failure analysis and prediction methods from the perspective of the theoretical models. At the same time, the influence and correlation mechanism of hole-making quality and assembly accuracy on the mechanical properties of their connections are summarized from the hole-making processes and damage of composite/metal stacked structures.

Findings

The progressive damage analysis method can accurately analyze and predict the static strength failure of composite/metal stacked bolted joint structures by establishing a stress analysis model combined with composite material performance degradation schemes and failure criteria. The use of mature metal material fatigue cumulative damage models and composite material fatigue progressive damage analysis methods can effectively predict the fatigue of composite/metal bolted joints. The geometric errors such as aperture accuracy and holes perpendicularity have the most significant impact on the connection performance, and their mechanical responses mainly include ultimate strength, bearing stiffness, secondary bending effect and fatigue life.

Research limitations/implications

Current research on the theoretical prediction of the mechanical properties of composite/metal bolted joints is mainly based on ideal fits with no gaps or uniform gaps in the thickness direction, without considering the hole shape characteristics generated by stacked drilling. At the same time, the service performance evaluation of composite/metal stacked bolted joints structures is currently limited to static strength and fatigue failure tests of the sample-level components and needs to be improved and verified in higher complexity structures. At the same time, it also needs to be extended to the mechanical performance research under more complex forms of the external loads in more environments.

Originality/value

The mechanical performance of the connection structure directly affects the overall structural safety of the aircraft. Many scholars actively explore the theoretical prediction methods for static strength and fatigue failure of composite/metal bolted joints as well as the impact of hole-making accuracy on their mechanical properties. This article provides an original overview of the current research status of aeronautical composite/metal bolted joint and its mechanical properties, with a focus on exploring the failure analysis and prediction methods from the perspective of theoretical models for static strength and fatigue failure of composite/metal bolt joints and looks forward to future research directions.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 5 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 5 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 335