Search results

1 – 10 of over 77000
Article
Publication date: 1 February 1940

R. Brulé

IN modern machining practice, precision grinding (the operation known in France as “rectification” is carried out on a limited number of parts and the use of the term immediately…

Abstract

IN modern machining practice, precision grinding (the operation known in France as “rectification” is carried out on a limited number of parts and the use of the term immediately suggests the type of component usually subjected to this method of working—the gear wheel.

Details

Aircraft Engineering and Aerospace Technology, vol. 12 no. 2
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 4 May 2010

Qinglong An, Yucan Fu and Jiuhua Xu

Grinding may generate high temperature along the arc of grinding zone, especially during the grinding process of difficult‐to‐machine materials. It can cause thermal damage to the…

Abstract

Purpose

Grinding may generate high temperature along the arc of grinding zone, especially during the grinding process of difficult‐to‐machine materials. It can cause thermal damage to the ground surface and poor surface integrity. Conventional cooling methods based on large amounts of water‐oil emulsions can be both ineffective and environmentally unacceptable. The purpose of this paper is to offer a new high efficiency cooling method – cryogenic pneumatic mist jet cooling (CPMJ) to enhance heat transfer in the grinding zone during grinding of difficult‐to‐machine materials.

Design/methodology/approach

CPMJ equipment is a set up, which can produce water mist of −5°C with jet velocity above 150 m/s and mean particle size below 20 μm at the impingement distance of 10‐40 mm on the symmetry axis. To validate the cooling efficiency of CPMJ equipment, heat transfer experiments were carrying out on it. Finally, CPMJ was applied to the grinding of titanium alloy to verify its cooling effects.

Findings

With high penetrative power and water mist of −5°C, CPMJ can greatly improve heat transfer efficiency in the grinding zone. Experimental results, including heat transfer experiments and grinding experiments, indicate that CPMJ has strong cooling ability and can offer better cooling effects compared with cold air jet and traditional flood cooling method. With CPMJ cooling method, grinding zone temperature can be effectively reduced and good surface quality can be achieved during grinding of titanium alloy.

Originality/value

CPMJ cooling method is an effective and pollution‐free way to solve the thermal problems during grinding of difficult‐to‐machine materials.

Details

Industrial Lubrication and Tribology, vol. 62 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 April 2017

Kankan Ji, Xingquan Zhang, Shubao Yang, Liping Shi, Shiyi Wang and Yuguo Wu

The purpose of this paper is to evaluate surface integrity of quenched steel 1045 ground drily by the brazed cubic boron nitride (CBN) grinding wheel and the black SiC wheel…

Abstract

Purpose

The purpose of this paper is to evaluate surface integrity of quenched steel 1045 ground drily by the brazed cubic boron nitride (CBN) grinding wheel and the black SiC wheel, respectively. Surface integrity, including surface roughness, sub-surface hardness, residual stresses and surface morphology, was investigated in detail, and the surface quality of samples ground by two grinding wheels was compared.

Design/methodology/approach

In the present work, surface integrity of quenched steel 1045 machined by the CBN grinding wheel and the SiC wheel was investigated systematically. All the specimens were machined with a single pass in the down-cutting mode of dry condition. Surface morphology of the ground specimen was observed by using OLYMPUS BX51M optical microscopy. Surface roughness of seven points was measured by using a surface roughness tester at a cut-off length of 1.8 mm and the measurement traces were perpendicular to the grinding direction. Sub-surface micro-hardness was measured by using HVS-1000 digital micro-hardness tester after the cross-section surface was polished. The residual stress was tested by using X-350A X-ray stress analyzer.

Findings

When the cut depth is increased from 0.01 to 0.07 mm, the steel surface machined by the CBN wheel remains clear grinding mark, lower roughness, higher micro-hardness and higher magnitude of compressive stress and fine microstructure, while the surface machined by the SiC grinding wheel becomes worse with increasing of cut depth. The value of micro-hardness decreases, and the surface roughness increases, and the surface compressive stress turns into tensile stress. Some micro-cracks and voids occur when the sample is processed by the SiC grinding wheel with cut depth 0.07 mm.

Originality/value

In this paper, the specimens of quenched steel 1045 were machined by the CBN grinding wheel and the SiC wheel with various cutting depths. The processing quality resulted from the CBN grinding wheel is better than that resulted from the SiC grinding wheel.

Details

International Journal of Structural Integrity, vol. 8 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 June 2012

T.D. Lavanya and V.E. Annamalai

The purpose of this paper is to simplify the testing of coolants for grinding in the automotive industry.

195

Abstract

Purpose

The purpose of this paper is to simplify the testing of coolants for grinding in the automotive industry.

Design/methodology/approach

A simple equipment is developed to test the coolant, by simulating the coolant‐grinding wheel‐workpiece interface and measuring in terms of grinding parameters.

Findings

It was found that the simulator could indicate the performance trends that closely match the actual grinding conditions.

Research limitations/implications

Since this is a general system, it has to be customised with individual settings of the machining parameters for a meaningful interpretation and for comparison between machines.

Practical implications

This equipment will simplify the selection of coolants for grinding and serve as a pre‐qualifier before approving for trials in full‐scale shopfloor conditions.

Originality/value

The design of the equipment is new and provides an alternate for the otherwise costly, full‐scale evaluation of coolants on the shopfloor.

Details

Industrial Lubrication and Tribology, vol. 64 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 October 2019

Jia-Bo Zhang, Yang Yang, Xiao-Hui Zhang, Jia-Liang Guan, Li-Yan Zheng and Guang Li

The purpose of this study is to investigate the characteristic and function of oxide film formed on grinding wheel in electrolytic in-process dressing (ELID) precision grinding

Abstract

Purpose

The purpose of this study is to investigate the characteristic and function of oxide film formed on grinding wheel in electrolytic in-process dressing (ELID) precision grinding and improve the quality of ELID grinding.

Design/methodology/approach

Dynamic film forming experiments were carried out with a simulation device close to the actual processing conditions. Then, the ELID grinding experiments of bearing rings were performed using grinding wheels with good film forming effect. The experiment was designed by quadratic regression general rotation combination method. The influence of grinding depth, electrolytic voltage, duty cycle and grinding wheel linear speed on grinding effect is analyzed.

Findings

A mathematical model for the formation rate of oxide film was established. The experiments show that the composition of grinding wheel and grinding fluid, as well as the electrical parameters, influence the film forming effect. Thus, the oxide film plays an important role in ELID grinding.

Originality/value

This study provides a reference for the design and selection of grinding wheel and grinding fluid and the setting of process parameters in ELID grinding.

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 August 2001

Trygve Thomessen, Terje K. Lien and Per K. Sannæs

Presents a robot control system dedicated to grinding large Francis turbines. The control system is based on an active force feedback system using a three‐axes force sensor…

1353

Abstract

Presents a robot control system dedicated to grinding large Francis turbines. The control system is based on an active force feedback system using a three‐axes force sensor attached to the robot’s end effector. This system offers high flexibility and robustness against workpiece positioning and grinding tool wear. It provides control of the grinding process parameters ensuring high productivity in addition to good grinding performance and grinding tool economy. The system was experimentally tested out on a MultiCraft 560 grinding robot.

Details

Industrial Robot: An International Journal, vol. 28 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 1 January 1962

W.F. Walker

The third in a series giving suggestions for laboratory work on the various types of machine tool

Abstract

The third in a series giving suggestions for laboratory work on the various types of machine tool

Details

Education + Training, vol. 4 no. 1
Type: Research Article
ISSN: 0040-0912

Article
Publication date: 10 January 2024

Zhaozhi Li, Changfu Zhang, Hairong Zhang, Haihui Liu, Zhao Zhu and Liucheng Wang

This study aims to apply an electrochemical grinding (ECG) technology to improve the material removal rate (MRR) under the premise of certain surface roughness in machining U71Mn…

Abstract

Purpose

This study aims to apply an electrochemical grinding (ECG) technology to improve the material removal rate (MRR) under the premise of certain surface roughness in machining U71Mn alloy.

Design/methodology/approach

The effects of machining parameters (electrolyte type, grinding wheel granularity, applied voltage, grinding wheel speed and machining time) on the MRR and surface roughness are investigated with experiments.

Findings

The experiment results show that an electroplated diamond grinding wheel of 46# and 15 Wt.% NaNO3 + 10 Wt.% NaCl electrolyte is more suitable to be applied in U71Mn ECG. And the MRR and surface roughness are affected by machining parameters such as applied voltage, grinding wheel speed and machining time. In addition, the maximum MRR of 0.194 g/min is obtained with the 15 Wt.% NaCl electrolyte, 17 V applied voltage, 1,500 rpm grinding wheel speed and 60 s machining time. The minimum surface roughness of Ra 0.312 µm is obtained by the 15 Wt.% NaNO3 + 10 Wt.% NaCl electrolyte, 13 V applied voltage, 2,000 rpm grinding wheel speed and 60 s machining time.

Originality/value

Under the electrolyte scouring effect, the products and the heat generated in the machining can be better discharged. ECG has the potential to improve MRR and reduce surface roughness in machining U71Mn.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0341/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 2 November 2023

FengShou Liu, Guang Yang, Zhaoyang Chen, Yinhua Zhang and Qingyue Zhou

The purpose of this paper is to summarize the status and characteristics of rail technology of high-speed railway in China, and point out the development direction of rail…

Abstract

Purpose

The purpose of this paper is to summarize the status and characteristics of rail technology of high-speed railway in China, and point out the development direction of rail technology of high-speed railway.

Design/methodology/approach

This study reviews the evolution of high-speed rail standards in China, comparing their chemical composition, mechanical attributes and geometric specifications with EN standards. It delves into the status of rail production technology, shifts in key performance indicators and the quality characteristics of rails. The analysis further examines the interplay between wheels and rails, the implementation of grinding technology and the techniques for inspecting rail service conditions. It encapsulates the salient features of rail operation and maintenance within the high-speed railway ecosystem. The paper concludes with an insightful prognosis of high-speed railway technology development in China.

Findings

The rail standards of high-speed railway in China are scientific and advanced, highly operational and in line with international standards. The quality and performance of rail in China have reached the world’s advanced level. The 60N profile guarantees the operation quality of wheel–rail interaction effectively. The rail grinding technology system scientifically guarantees the long-term good service performance of the rail. The rail service state detection technology is scientific and efficient. The rail technology will take “more intelligent” and “higher speed” as the development direction to meet the future needs of high-speed railway in China.

Originality/value

The development direction of rail technology for high-speed railway in China is defined, which will promote the continuous innovation and breakthrough of rail technology.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

1 – 10 of over 77000