Search results

1 – 10 of 21
Article
Publication date: 7 May 2024

Yinghong Li, Wei Tan, Wenjie Pei and Guorui Zhu

The purpose of this paper is to investigate the effect of NaCl solution with different concentrations on impact-sliding fretting corrosion behavior of Inconel 690TT steam…

Abstract

Purpose

The purpose of this paper is to investigate the effect of NaCl solution with different concentrations on impact-sliding fretting corrosion behavior of Inconel 690TT steam generator heat transfer tubes.

Design/methodology/approach

The optical 3D profiler was used to measure the wear profile and calculated the wear volume. Corrosion behavior was studied using open circuit potential monitoring and potentiodynamic polarization testing. The morphologies and elemental distributions of wear scars were analyzed using scanning electron microscopy and energy-dispersive spectroscopy. The synergism of wear and corrosion was analyzed according to the ASTM G119 standard.

Findings

The corrosion tendency reflected by OCP and the corrosion current calculated by Tafel both increased with the increase of NaCl concentration. The total volume loss of the material increased with concentration, and it was known from the synergism that the volume loss caused by corrosion-enhanced wear accounted for the largest proportion, while the wear-enhanced corrosion also made a greater contribution to volume loss than tangential fretting corrosion. Through the analysis of the material morphologies and synergism of wear and corrosion, the damage mechanism was elucidated.

Originality/value

The research findings can provide reference for impact-sliding fretting corrosion behavior of Inconel 690TT heat transfer tubes in NaCl solution with different concentrations.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 24 April 2024

Vahid Ahmadi, Seyed Mohammad Ali Hosseini, Effat Jamalizadeh and Razie Naghizade

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on…

Abstract

Purpose

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on 7075 aluminum alloy in 3.5% NaCl solution.

Design/methodology/approach

Aluminum alloys were dipped into ceria sol and ceria sol modified by ZnO nanoparticles separately and removed after 10 min from the solutions and dried at 110°C for 30 min and heated at 500 °C for 30 min to form the coatings. The coatings have been characterized by using field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The EIS tests were performed in a corrosive solution of 3.5% NaCl.

Findings

The results showed that the coating of ceria sol modified by ZnO nanoparticles has higher corrosion resistance than the ceria sol coating and the bare sample. Also, the best efficiency is related to aluminum sample immersion after 1 h in NaCl corrosive solution for coating modified by ZnO nanoparticles.

Originality/value

In this research, the modification of ceria sol coating by ZnO nanoparticles had an effect on improving the corrosion behavior of aluminum alloy. It is also understood that modification of coatings is an effective parameter on corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 August 2023

Abdul Wahab Hashmi, Harlal Singh Mali, Anoj Meena, Shadab Ahmad and Yebing Tian

Three-dimensional (3D) printed parts usually have poor surface quality due to layer manufacturing’s “stair casing/stair-stepping”. So post-processing is typically needed to…

Abstract

Purpose

Three-dimensional (3D) printed parts usually have poor surface quality due to layer manufacturing’s “stair casing/stair-stepping”. So post-processing is typically needed to enhance its capabilities to be used in closed tolerance applications. This study aims to examine abrasive flow finishing for 3D printed polylactic acid (PLA) parts.

Design/methodology/approach

A new eco-friendly abrasive flow machining media (EFAFM) was developed, using paper pulp as a base material, waste vegetable oil as a liquid synthesizer and natural additives such as glycine to finish 3D printed parts. Characterization of the media was conducted through thermogravimetric analysis and Fourier transform infrared spectroscopy. PLA crescent prism parts were produced via fused deposition modelling (FDM) and finished using AFM, with experiments designed using central composite design (CCD). The impact of process parameters, including media viscosity, extrusion pressure, layer thickness and finishing time, on percentage improvement in surface roughness (%ΔRa) and material removal rate were analysed. Artificial neural network (ANN) and improved grey wolf optimizer (IGWO) were used for data modelling and optimization, respectively.

Findings

The abrasive media developed was effective for finishing FDM printed parts using AFM, with SEM images and 3D surface profile showing a significant improvement in surface topography. Optimal solutions were obtained using the ANN-IGWO approach. EFAFM was found to be a promising method for improving finishing quality on FDM 3D printed parts.

Research limitations/implications

The present study is focused on finishing FDM printed crescent prism parts using AFM. Future research may be done on more complex shapes and could explore the impact of different materials, such as thermoplastics and composites for different applications. Also, implication of other techniques, such as chemical vapour smoothing, mechanical polishing may be explored.

Practical implications

In the biomedical field, the use of 3D printing has revolutionized the way in which medical devices, implants and prosthetics are designed and manufactured. The biodegradable and biocompatible properties of PLA make it an ideal material for use in biomedical applications, such as the fabrication of surgical guides, dental models and tissue engineering scaffolds. The ability to finish PLA 3D printed parts using AFM can improve their biocompatibility, making them more suitable for use in the human body. The improved surface quality of 3D printed parts can also facilitate their sterilization, which is critical in the biomedical field.

Social implications

The use of eco-friendly abrasive flow finishing for 3D printed parts can have a positive impact on the environment by reducing waste and promoting sustainable manufacturing practices. Additionally, it can improve the quality and functionality of 3D printed products, leading to better performance and longer lifespans. This can have broader economic and societal benefits.

Originality/value

This AFM media constituents are paper pulp, waste vegetable oil, silicon carbide as abrasive and the mixture of “Aloe Barbadensis Mill” – “Cyamopsis Tetragonoloba” powder and glycine. This media was then used to finish 3D printed PLA crescent prism parts. The study also used an IGWO to optimize experimental data that had been modelled using an ANN.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 September 2024

Liberato Venant Haule

A review of sustainability challenges of flame retardants (FRs) for textiles has been conducted. Specifically, the purpose of this paper is to identify and recommend solutions to…

Abstract

Purpose

A review of sustainability challenges of flame retardants (FRs) for textiles has been conducted. Specifically, the purpose of this paper is to identify and recommend solutions to sustainability challenges emanating from the raw material, processing technology and performance of the FRs used for textiles.

Design/methodology/approach

The approach used in preparing this paper was based on the review of various scholarly databases about the subject matter. The review approach is designed to inform the readers about the sustainability challenges of FRs for textiles. The science of burning and FRs for synthetic and cellulosic fibres were reviewed. Both synthetic and natural biodegradable FRs for textiles has been identified. The obtained literature was then synthesised to get information about sustainable challenges of non-halogenated FRs both synthetic and natural biodegradable. Finally, possible approaches for mitigating the identified challenges have been recommended.

Findings

The sustainability challenges of the FRs in terms of raw material, processing, affordability and performance have been identified. Synthetic FRs suffer from sustainability challenges in terms of raw materials, processing and non-renewability. Despite the environmental friendliness and sustainability in terms of being renewability, processability and biodegradability, natural biodegradable FRs have poor performance compared to synthetic ones. Moreover, natural biodegradable FRs depend on geographical condition and lack economic variability data. Potentially, the challenges of FRs can be mitigated through eco-friendly synthesis, chemical modification and sustainable methods of applications. Because of its renewability and environmental friendliness, biodegradable FRs have a potential to becoming sustainable if researched more.

Originality/value

In this review, a collection of literature about sustainability challenges of FRs and the approaches to overcome the challenges has been provided. The collected information was analysed and synthesised to bring understanding of the science of burning, types and application of FRs for textiles and biodegradable FRs. Sustainability challenges have been identified, and mitigation approaches are provided.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 6 May 2024

Mohammed Al Kailani, Aysha Al Dhaheri and Wael Sheta

Interior workspace environments use exclusively artificial light, resulting in a loss of biological connection and natural light quality, as well as greater energy consumption…

Abstract

Purpose

Interior workspace environments use exclusively artificial light, resulting in a loss of biological connection and natural light quality, as well as greater energy consumption. The purpose of the study is to identify a suitable system that can provide natural light to such interior spaces throughout the day while supplementing it with artificial light when necessary. The fundamental aim is to provide insights into the most effective solutions for energy-efficient lighting design in the UAE's environment, with the potential to lower energy consumption related to interior lighting.

Design/methodology/approach

The study adopted an empirical approach to gather and analyze primary data based on field measurements to understand and assess existing lighting conditions, as well as DIALux lighting simulation software to test the efficacy of the proposed HLS in terms of natural light delivery, illumination quality and energy consumption. A branch of a local bank in the United Arab Emirates, situated inside one of the shopping malls where there is no natural light penetration, has been chosen as a case study.

Findings

The findings of comparing the base case to four probable scenarios that used HLS revealed that the third scenario, which uses 100% pure sunshine and 35% artificial LED light during daylight operations and 100% LED light during night duty, is considered to be optimal in terms of illumination quality and energy efficiency.

Originality/value

The study demonstrated the potential of innovative lighting to improve the visual working environment in interior spaces with limited access to direct natural lighting, especially in arid regions, where sunlight is plentiful throughout the year. The study contributes new insights into the establishment of lighting-related recommendations and standards for the UAE context. This may include advice for sustainable construction practices, lighting guidelines or incentives to encourage the use of hybrid lighting technology in commercial and institutional buildings.

Details

Frontiers in Engineering and Built Environment, vol. 4 no. 3
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 10 January 2024

Zhaozhi Li, Changfu Zhang, Hairong Zhang, Haihui Liu, Zhao Zhu and Liucheng Wang

This study aims to apply an electrochemical grinding (ECG) technology to improve the material removal rate (MRR) under the premise of certain surface roughness in machining U71Mn…

Abstract

Purpose

This study aims to apply an electrochemical grinding (ECG) technology to improve the material removal rate (MRR) under the premise of certain surface roughness in machining U71Mn alloy.

Design/methodology/approach

The effects of machining parameters (electrolyte type, grinding wheel granularity, applied voltage, grinding wheel speed and machining time) on the MRR and surface roughness are investigated with experiments.

Findings

The experiment results show that an electroplated diamond grinding wheel of 46# and 15 Wt.% NaNO3 + 10 Wt.% NaCl electrolyte is more suitable to be applied in U71Mn ECG. And the MRR and surface roughness are affected by machining parameters such as applied voltage, grinding wheel speed and machining time. In addition, the maximum MRR of 0.194 g/min is obtained with the 15 Wt.% NaCl electrolyte, 17 V applied voltage, 1,500 rpm grinding wheel speed and 60 s machining time. The minimum surface roughness of Ra 0.312 µm is obtained by the 15 Wt.% NaNO3 + 10 Wt.% NaCl electrolyte, 13 V applied voltage, 2,000 rpm grinding wheel speed and 60 s machining time.

Originality/value

Under the electrolyte scouring effect, the products and the heat generated in the machining can be better discharged. ECG has the potential to improve MRR and reduce surface roughness in machining U71Mn.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0341/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 December 2023

Amir Rezaei

This paper aims to study the feasibility of using machine learning in hot corrosion prediction of Inconel 617 alloy.

Abstract

Purpose

This paper aims to study the feasibility of using machine learning in hot corrosion prediction of Inconel 617 alloy.

Design/methodology/approach

By examination of the experimental studies on hot corrosion of Inconel 617, a data set was built for machine learning models. Apart from the alloy composition, this paper included the condition of hot corrosion like time and temperature, and the composition of the saline medium as independent features, while the specific mass change is set as the target feature. In this paper, linear regression, random forest and XGBoost are used to predict the specific mass gain of Inconel 617.

Findings

XGBoost yields the coefficient of determination (R2) of 0.98, which was highest among models. Also, this model recorded the lowest value of mean absolute error (0.20). XGBoost had the best performance in predicting specific mass gain of the alloy in different times at temperature of 900°C. In sum, XGBoost shows highest accuracy in predicting specific mass gain for Inconel 617.

Originality/value

Using machine learning to predict hot corrosion in Inconel 617 marks a substantial progress in this domain and holds promise for simplifying the development and evaluation of novel materials featuring enhanced hot corrosion resilience.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 September 2023

Raj Shah, Nikhil Pai and Andreas Rosenkranz

This paper aims at analyzing the potential of new materials in magnesium-ion batteries (MIBs) with a particular focus on options for electrodes and electrolyte solutions while…

Abstract

Purpose

This paper aims at analyzing the potential of new materials in magnesium-ion batteries (MIBs) with a particular focus on options for electrodes and electrolyte solutions while also carefully considering the barriers to their entry in this application for MIBs, with a particular focus on the material options for electrodes and electrolyte solutions.

Design/methodology/approach

Potential materials for MIBs were examined for sustainability, safety and efficiency to develop the sustainable and well-working MIBs.

Findings

For anode materials, the use of Mg-bismuth alloys has shown promise, whereas Chevrel phases or layered molybdenum disulfide have potential as cathode materials. Potential electrolytes range from traditional materials to the development of tailored solid-state and liquid-based options.

Originality/value

This study considers the growing need for Mg-based ion batteries, as well as the need for suitable electrode and electrolyte materials and analyzes suitable options.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0081/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 December 2023

B. Zhang, X.X. Wei and X.L. Ma

In recent years, using aberration-corrected transmission electron microscopy, the authors have achieved precisely detecting the structural evolution of passive film as well as its…

Abstract

Purpose

In recent years, using aberration-corrected transmission electron microscopy, the authors have achieved precisely detecting the structural evolution of passive film as well as its interface zone at atomic scale. The purpose of this paper aims to make a brief review to show the authors’ new understanding and perspective on the issue of critical factors determining stability of passive film of Fe-Cr alloy.

Design/methodology/approach

The introduction of single crystal enabled the authors to obtain a distinct metal/passive film interface and better characterize the structure of the interface region. The authors use aberration-corrected TEM to conduct cross-sectional observation and directly capture the details across the entire film at a high spatial and energy resolution.

Findings

Apart from the passive film itself, the interface zone, including metal/film (Me/F) interface and the adjacent metal side, is also the site which is attacked. Accordingly, the nature of the interface zone, such as microstructure, composition and atomic configuration, is one of the critical factors determining the stability of passive film.

Originality/value

Deciphering the critical factors determining the stability of passive film is of great significance and has been a fundamental issue in corrosion science. Great attention has been paid to the nature of the passive film itself. In contrast, the possible role of the interface between the passive film and the metal is rarely taken into account. Based on the advanced analytical tool with high spatial resolution, the authors have specified the significant role of interface structures on the macro-scale stability of passive film.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 21 December 2022

Vimal Kumar Deshmukh, Mridul Singh Rajput and H.K. Narang

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on…

Abstract

Purpose

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on as deposited features; and to understand the characteristics of jet electrodeposition deposition defects and its preventive procedures through available research articles.

Design/methodology/approach

A systematic review has been done based on available research articles focused on jet electrodeposition and its characteristics. The review begins with a brief introduction to micro-electrodeposition and high-speed selective jet electrodeposition (HSSJED). The research and developments on how jet electrochemical manufacturing are clustered with conventional micro-electrodeposition and their developments. Furthermore, this study converges on comparative analysis on HSSJED and recent research trends in high-speed jet electrodeposition of metals, their alloys and composites and presents potential perspectives for the future research direction in the final section.

Findings

Edge defect, optimum nozzle height and controlled deposition remain major challenges in electrochemical manufacturing. On-situ deposition can be used as initial structural material for micro and nanoelectronic devices. Integration of ultrasonic, laser and acoustic source to jet electrochemical manufacturing are current trends that are promising enhanced homogeneity, controlled density and porosity with high precision manufacturing.

Originality/value

This paper discusses the key issue associated to high-speed jet electrodeposition process. Emphasis has been given to various electrochemical parameters and their effect on deposition. Pros and cons of variations in electrochemical parameters have been studied by comparing the available reports on experimental investigations. Defects and their preventive measures have also been discussed. This review presented a summary of past achievements and recent advancements in the field of jet electrochemical manufacturing.

1 – 10 of 21