Search results

1 – 9 of 9
Article
Publication date: 2 March 2023

Walid E. Elgammal, Essam M. Eliwa, Hosni A. Goomaa, Medhat E. Owda and H. Abd El-Wahab

This paper aims to focus on the synthesis of the macrocyclic complexes (Cu and Zn) and their applications as anticorrosive materials in epoxy paint formulation for surface coating…

Abstract

Purpose

This paper aims to focus on the synthesis of the macrocyclic complexes (Cu and Zn) and their applications as anticorrosive materials in epoxy paint formulation for surface coating application.

Design/methodology/approach

A selected macrocyclic Cu(II) and Zn(II) complexes were prepared via template synthesis and characterized using Fourier transform infrared, thermal gravimetric analysis, scanning electron microscope, flexibility, hardness and adhesion of coating films prepared using epoxy paint.

Findings

The corrosion resistance of the epoxy-painted films was improved due to the incorporation of the Zn and Cu complexes into the formulation.

Originality/value

It was found that the metal complex-based formulation with Cu(II) and Zn(II) had outperformed the sample blank.

Details

Pigment & Resin Technology, vol. 53 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 May 2022

H. Abd El-Wahab and Raafat A. El-Eisawy

This paper aims to prepare new modified alkyd resins and use it as an antimicrobial binder for surface coating applications.

Abstract

Purpose

This paper aims to prepare new modified alkyd resins and use it as an antimicrobial binder for surface coating applications.

Design/methodology/approach

Various modified alkyd resins were prepared by partial replacement of 3,6-dichloro benzo[b]thiophene-2-carbonyl bis-(2-hydroxy ethyl)-amide as a source of polyol with glycerol and confirmed by acid value, FT-IR, 1H-NMR. The modified alkyd resins were covering a wide range of oil lengths and hydroxyl content (0%, 10%, 20% and 30% excess-OH). The antimicrobial activity of the prepared alkyds was also investigated. The coatings of 60 ± 5 µm thickness were applied to the surface of glass panels and mild steel strips by means of a brush. Physico-mechanical tests, chemical resistance and antimicrobial activities were investigated.

Findings

The obtained results illustrate that the introduction of benzo[b]thiophene derivative as a modifier polyol within the resin structure improved the film performance and enhanced the physico-mechanical characteristics, chemical resistance and the antimicrobial activities.

Practical implications

The modified alkyd resins can be employed as antimicrobial binders in paint compositions for a variety of surfaces, particularly those that are susceptible to a high number of bacteria.

Originality/value

Modified alkyd resins based on antimicrobial heterocyclic compounds have the potential to be promising in the manufacturing of antimicrobial coatings and development of paints, allowing them to function to prevent the spread of microbial infection, which is exactly what the world requires at this time. Also, they can be applied in different substrates for industrial applications.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 27 February 2023

Ali A. Ali, H. Abd El-Wahab, Moustafa S. Abusaif, Ahmed Ragab, Omar A. Abdel-Jaid, E.A. Eldeeb and Yousry A. Ammar

The paper aims to the preparation of novel disperse dye based on azo salicylaldehyde derivatives TF-A [2-hydroxy-5-((3-(trifluoromethyl)phenyl)diazenyl)benzaldehyde] and full…

Abstract

Purpose

The paper aims to the preparation of novel disperse dye based on azo salicylaldehyde derivatives TF-A [2-hydroxy-5-((3-(trifluoromethyl)phenyl)diazenyl)benzaldehyde] and full evaluation of their use as disperse dye TF-ASC [bis 2-hydroxy-5-((3-(trifluoromethyl)phenyl)diazenyl)benzaldehyde Schiff base with 4,4'-methylenedianiline] for dyeing polyester fabric at various conditions.

Design/methodology/approach

The dispersed dye was synthesized via Schiff base condensation in the presence of ceric ammonium nitrate cerium ammonium nitrate 10 mmole% as an eco-friendly catalyst at room temperature. The chemical structure of the prepared dye was characterized via elemental analysis, Fourier-transform infrared spectroscopy, 1H- and 13 C-NMR spectroscopic analysis tools. This study thoroughly examined the dyeing of disperse dye TF-ASC on polyester at various conditions. The characteristics of dyed polyester fabric were measured by colour measurements, as well as light, washing, crock fastness and finally, colour strength. The discrete fourier transform (DFT) theoretical studies, including EHOMO, ELUMO and optimized geometrical structure, were assumed and discussed in detail.

Findings

The results showed that the synthesized organic dye TF-ASC was highly functional and appropriate for this kind of dyeing method. The dyeing fabrics obtained from disperse dye TF-ASC, properties possess high colour strength as well as good overall fastness properties. These dyes had a high affinity for polyester fabric, with just a tiny change in dye affinity when the pH was changed, even under alkaline circumstances. The dye levelness and shade depth of the colour results were good, and there were a variety of hues from light brownish yellow to deep brownish yellow. The results obtained from DFT computational studies such as EHOMO, ELUMO, optimized structure, diploe moment µ and electrophilicity index deduced that prepared organic dye TF-ASC is more applicable as a dispersed dye.

Originality/value

This research is significant because it provides a new dye for dyeing polyethylene terephthalate fibres with exceptional brightness and levelness; the method of preparation is a useful pathway due to its being known as a green chemistry method.

Details

Pigment & Resin Technology, vol. 53 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 September 2022

Hamada Abdelwahab, Fatimah A.M. Al-Zahrani, Ali A. Ali, Ammar Mahmoud and Long Lin

This paper aims to synthesize new screen-printing ink formula based on new derivatives of azo thiadiazol disperse dyes and evaluate their characteristics after being printed on…

Abstract

Purpose

This paper aims to synthesize new screen-printing ink formula based on new derivatives of azo thiadiazol disperse dyes and evaluate their characteristics after being printed on polyester fabric substrates.

Design/methodology/approach

New dispersed dyes based on 1, 3, 4-Thiadiazole derivatives (dyes 1 and 2) were prepared and confirmed by different analyses, infrared (IR), mass and nuclear magnetic resonance (NMR) spectroscopy, and then formulated as colored materials in the screen-printing ink formulations. Printing pastes containing the prepared dyestuffs and other ingredients were used for printing polyester using screen-printing or traditional printing. The characteristics of printed polyester fabric substrates were measured by color measurements such as a*, b*, L*, C*, E, Ho, R% and color strength, as well as light, washing, crock and alkali perspiration fastness, and finally, the depth of penetration was evaluated.

Findings

The prepared 1, 3, 4-Thiadiazole derivatives (dyes 1 and 2) were obtained from the reaction of 5,5’-(1,4-phenylene)bis(1,3,4-Thiadiazole-2-amine) with resorcinol and m-toluidine as a coupling component. The suitability of the prepared dyestuffs for silk screen-printing on polyester fabrics has been investigated. The prints obtained from a formulation containing dye 1 possess high color strength as well as good overall fastness properties if compared to those obtained using dye 2.

Practical implications

The method of synthesis of the new dyestuffs and screen-printing ink provides a simple and practical solution to prepare some new heterocyclic disperse azo dyes, and they are formulated in the screen-printing inks for printing on a polyester fabric substrate.

Originality/value

The prepared disperse dyes based on 1,3,4-Thiadiazole derivatives (dyes 1 and 2) could be used in textile printing of polyester on an industrial scale.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 May 2024

Hossa F. Al-Shareef, Ahmed M. Yousif, Rafaat Eleisawy, Ammar M. Mahmoud and Hamada Abdelwahab

This paper aims to prepare alkyd protective paint by using modified alkyd with 3,6-dichloro benzo[b]thiophene-2-carbonyl glutamic acid (DCBTGA) as a source of dicarboxylic acid…

Abstract

Purpose

This paper aims to prepare alkyd protective paint by using modified alkyd with 3,6-dichloro benzo[b]thiophene-2-carbonyl glutamic acid (DCBTGA) as a source of dicarboxylic acid and evaluating their anticorrosive properties compared with those of unmodified alkyd coatings for steel protection.

Design/methodology/approach

Short, medium and long oil alkyds, which represented as (0, 10, 20 and 30% excess-OH) according to the resin constants (Patton, 1962), were prepared through a condensation polymerization reaction via a solvent process in a one-step reaction. The modification of alkyd was carried out by using DCBTGA as a source of dicarboxylic acid. The prepared modified alkyd was confirmed by IR and NMR spectral analysis. The physicochemical, mechanical and anticorrosion performance properties of the considered modified coating formulations against unmodified blank coating were studied to confirm their application efficiency.

Findings

The best results in terms of physicochemical, mechanical and anticorrosion performance properties were found according to the following of this order activity: 30 replacements of the modifier (DCBTGA) for each hydroxyl continent were 30% Ex-OH > 20% Ex-OH > 10% Ex-OH > 0% Ex-OH, compared with that formulation containing unmodified alkyd, especially with increasing the modifier percent.

Originality/value

The prepared DCBTGA-modified resins can be used for different applications based on the type of alkyd and application.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 November 2022

Youssef L. Nashed, Fouad Zahran, Mohamed Adel Youssef, Manal G. Mohamed and Azza M. Mazrouaa

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic…

Abstract

Purpose

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic polymer.

Design/methodology/approach

Applying free radical polymerization, an acrylate terpolymer emulsion that a surfactant had stabilized was created. A thermogravimetric analysis, minimum film-forming temperature, Fourier transform infrared spectroscopy and particle size distribution are used to characterize the prepared eco-friendly water base acrylate terpolymer emulsion. Using three different percentages of the acrylate terpolymer emulsion produced, 35%, 45% and 55%, the anti-carbonation coating was formed. Tensile strength, tensile strain, elongation, crack-bridging ability, carbon dioxide permeability, chloride ion diffusion, average pull-off adhesion strength, water vapor transmission, gloss, wet scrub resistance, QUV/weathering and storage stability are the characteristics of the anti-carbonation coating.

Findings

The formulated acrylate terpolymer emulsion enhances anti-carbonation coating performance in CO2 permeability, Cl-diffusion, crack bridging, pull-off adhesion strength and water vapor transmission. The formed coating based on the formulated acrylate terpolymer emulsion performed better than its commercial counterpart.

Practical implications

To protect the steel embedded in concrete from corrosion and increase the life span of concrete, the surface of cement is treated with an anti-carbonation coating based on synthetic acrylate terpolymer emulsion.

Social implications

In addition to saving lives from building collapse, it maintains the infrastructure for the long run.

Originality/value

The anti-carbonation coating, which is based on the synthetic acrylate terpolymer emulsion, is environmentally benign and stops the entry of carbon dioxide and chlorides, which are the main causes of steel corrosion in concrete.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Abstract

Graphical abstract

Purpose

This study aims to synthesize new disperse dyes based on novel pyrazolyl quinolinone derivatives EQ1 and EQ2 and evaluate their characteristics after dyeing them on a polyester fabric.

Design/methodology/approach

New dispersed dyes based on pyrazolyl quinolinone derivatives were prepared and confirmed by different analyses, such as infrared spectroscopy, elemental microanalysis and nuclear magnetic resonance spectroscopy. They were dyed on a polyester fabric. The characteristics of dyed polyester were determined by color measurements such as a*, b*, L*, C*, E, Ho, R% and color strength. The electronic structures of EQ1 and EQ2 in gaseous state were investigated using density functional theory/B3LYP/6-311++G (d, p) level of theory.

Findings

The suitability of the prepared dyestuffs for dyeing on polyester fabrics has been investigated. The study was concerned with comparing the contrasting depth of shade and levelness. The study was concerned mainly with dye uptake and color measurements at two different temperatures. The results showed that the exhaustion values of dyes inside the polyester at 130°C were higher than those obtained at conventional dyeing temperature (100°C). The exhaustion values of EQ2 were greater than those of EQ1 at 130°C with 2.2%, while the brightness of EQ2 was higher than that of EQ1 at the two investigated temperatures. The results of molecular orbital calculations show that the studied compounds are planar. In addition, the ionization potential of EQ1 was lower than that of EQ2. The results of the theoretical study helped in understanding the dyeing behavior of the investigated azo dyes.

Originality/value

The prepared disperse dyes based on pyrazolyl quinolinone derivatives could be used in textile dyeing of polyester on an industrial scale.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 August 2024

Qiqi Zhang, Weijun Zhen, Quansheng Ou, Yusufu Abulajiang and Gangshan Ma

The objective was to investigate the utility of cottonseed oil (CSO) as a raw material for the synthesis of CSO water-based alkyd resin. The synthesis involved the polymerization…

Abstract

Purpose

The objective was to investigate the utility of cottonseed oil (CSO) as a raw material for the synthesis of CSO water-based alkyd resin. The synthesis involved the polymerization of CSO, trimethylolpropane, phthalic anhydride (PA) and trimellitic anhydride (TMA). The prepared resin coating material was subsequently applied to the surface of steel structure material.

Design/methodology/approach

This study aimed to synthesize water-based alkyd resins using CSO. Therefore, the alkyd resin was introduced with TMA containing carboxyl groups and neutralized with triethylamine (TEA) to form a water-soluble salt. Then, the esterification kinetics of CSO water-based alkyd resin were investigated, and finally, the basic properties of CSO water-based alkyd resin coating were evaluated.

Findings

It was demonstrated that CSO water-based alkyd resin exhibited excellent water solubility and that the esterification kinetic of the synthesis reaction could be described by a second-order reaction. The coating properties of the material were investigated and found to have good basic properties, with 40% resin addition having the best corrosion resistance. Consequently, it could be effectively applied to the surface of steel structural materials.

Originality/value

This study not only met the requirement of environmentally friendly development but also expanded the application of CSO through the synthesis of CSO water-based alkyd resin via alcoholysis. Compared to fatty acid process, the alcoholysis reduced the need for fatty acid pre-extraction, simplifying the alkyd resin synthesis process. Thus, economic costs are effectively reduced.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 April 2024

Dina Ezz Eldin and Heba Magdy

Heritage buildings are a witness to previous civilizations and constitute important elements in transmitting cultural identity through generations. In 1938, Alexandria University…

Abstract

Purpose

Heritage buildings are a witness to previous civilizations and constitute important elements in transmitting cultural identity through generations. In 1938, Alexandria University was established; it was called the University of Farouk at the time. In 1952, the university was named “Alexandria University,” and since then, it has witnessed growth and expansion in several fields. The research aims to preserve the heritage of this academic institution. It seeks to document this wealth of buildings that tell the story of the second-earliest university in Egypt.

Design/methodology/approach

A mixed-method approach was employed. A descriptive method was used to narrate the history of the university and the importance of its buildings. Within the quantitative approach, a questionnaire was chosen as the survey instrument for collecting the data within the research case study. The aim was to determine the awareness of students, staff and employees of the heritage importance of their faculty. Within the qualitative approach, several interviews were conducted with employees in the engineering departments of the university administrative building at Chatby and some of the selected faculties. The aim was to determine the methods used for the conservation of these buildings.

Findings

Alexandria University has a heritage value not only in its great history but also through its heritage buildings. Raising the awarness of the university's affiliates of this heritage will lead to enhance the feelings of loyalty and belongings to the university. Therefore, preserving this heritage and properly managing it is crucial.

Originality/value

Universities have to recognize that their built heritage constitutes a unique expression that can create a distinctive sense of place. University heritage is crucial in defining and interpreting the university cultural identity. The institution must identify resources that will help build a new public image and contribute to develop a successful brand. Campus appearance is an important factor that has a significant impact on student feelings of loyalty and belonging.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

1 – 9 of 9