Search results

1 – 10 of 157
Article
Publication date: 23 January 2024

Evrim Baran Aydın, Eyüp Başaran, Sevgi Ateş and Reşit Çakmak

The aim of this study was to investigate the activity of 4-((4-((2-hydroxyethyl)(methyl)amino)benzylidene) amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (HEMAP), a…

Abstract

Purpose

The aim of this study was to investigate the activity of 4-((4-((2-hydroxyethyl)(methyl)amino)benzylidene) amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (HEMAP), a Schiff base synthesized and characterized for the first time, to the authors’ knowledge, as a novel inhibitor against corrosion of mild steel (MS) in hydrochloric acid solution.

Design/methodology/approach

HEMAP was characterized by some spectroscopic methods including High-Resolution Mass Spectrometry (HRMS), Proton Nuclear Magnetic Resonance (1H NMR), Carbon-13 (C13) nuclear magnetic resonance (13C NMR) and Fourier Transform Infrared Spectroscopy (FT-IR). Then, the inhibition efficiency of HEMAP on MS in a hydrochloric acid solution was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). To explain the inhibition mechanism, the surface charge, adsorption isotherms and thermodynamic parameters of MS in the inhibitor solution were studied.

Findings

EIS tests displayed that the highest inhibition efficiency was calculated approximately as 99.5% for 5 × 10−2 M HEMAP in 1 M HCl solution. The adsorption of HEMAP on the MS surface was found to be compatible with the Langmuir model isotherm. The thermodynamic parameter results showed that the standard free energy of adsorption of HEMAP on the MS surface was found to be more chemical than physical.

Originality/value

This study is important in terms of demonstrating the performance of the first synthesized HEMAP molecule as an inhibitor against the corrosion of MS in acidic media. EIS tests displayed that the highest inhibition efficiency was calculated approximately as 99.5% for 5 × 10−2 M HEMAP in 1 M HCl solution.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 December 2023

Huihong Feng, Jianxiang Zhao, Jiarui Hou and Huixia Feng

This study aims to investigate the influence of polyepoxysuccinic acid sodium (PESA), a green antiscalant, on the nucleation, crystallization and precipitation of magnesium…

Abstract

Purpose

This study aims to investigate the influence of polyepoxysuccinic acid sodium (PESA), a green antiscalant, on the nucleation, crystallization and precipitation of magnesium phosphate.

Design/methodology/approach

The conductivity method was used to investigate the maximum relative supersaturation of magnesium phosphate across various PESA dosages. Subsequently, a magnesium phosphate scale was prepared using the static scale inhibition method (GB/T16632-1996) and then analyzed via scanning electron microscopy.

Findings

The findings showed that PESA extends the induction period of magnesium phosphate crystallization, reduces crystal growth rate and elevates the solution’s relative supersaturation. Notably, PESA exerts a low dosage effect on inhibition of the magnesium phosphate scale, with the optimal dosage identified at 10 mL. Scanning electron microscopy revealed that PESA dispenses a dispersing effect on the magnesium phosphate scale, generating numerous concave, convex and deeper pores on the scale particles’ surface, and thereby significantly enhancing the surface area, especially when using an antiscalant with variable dosages.

Originality/value

This study sheds new light on the impact of PESA, a green antiscalant, on the crystallization and precipitation of magnesium phosphate, thus paving the way for the development of enhanced and eco-friendly scale inhibition strategies in future applications.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 December 2023

Prathamesh Gaikwad and Sandeep Sathe

The purpose of this paper is to study and analyze the effects of fly ash (FA) as a mineral admixture on compressive strength (CS), carbonation resistance and corrosion resistance…

Abstract

Purpose

The purpose of this paper is to study and analyze the effects of fly ash (FA) as a mineral admixture on compressive strength (CS), carbonation resistance and corrosion resistance of reinforced concrete (RC). In addition, the utilization of inexpensive and abundantly available FA as a cement replacement in concrete has several benefits including reduced OPC usage and elimination of the FA disposal problem.

Design/methodology/approach

Reinforcement corrosion and carbonation significantly affect the strength and durability of the RC structures. Also, the utilization of FA as green corrosion inhibitors, which are nontoxic and environmentally friendly alternatives. This review discusses the effects of FA on the mechanical characteristics of concrete. Also, this review analyzes the impact of FA as a partial replacement of cement in concrete and its effect on the depth of carbonation in concrete elements and the corrosion rate of embedded steel as well as the chemical composition and microstructure (X-ray diffraction analysis and scanning electron microscopy) of FA concrete were also reviewed.

Findings

This review provides a clear analysis of the available study, providing a thorough overview of the current state of knowledge on this topic. Regarding concrete CS, the findings indicate that the incorporation of FA often leads to a loss in early-age strength. However, as the curing period increased, the strength of fly ash concrete (FAC) increased with or even surpassed that of conventional concrete. Analysis of the accelerated carbonation test revealed that incorporating FA into the concrete mix led to a shallower carbonation depth and slower diffusion of carbon dioxide (CO2) into the concrete. Furthermore, the half-cell potential test shows that the inclusion of FA increases the durability of RC by slowing the rate of steel-reinforcement corrosion.

Originality/value

This systematic review analyzes a wide range of existing studies on the topic, providing a comprehensive overview of the research conducted so far. This review intends to critically assess the enhancements in mechanical and durability attributes (such as CS, carbonation and corrosion resistance) of FAC and FA-RC. This systematic review has practical implications for the construction and engineering industries. This can support engineers and designers in making informed decisions regarding the use of FA in concrete mixtures, considering both its benefits and potential drawbacks.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 April 2024

Liang Ma, Qiang Wang, Haini Yang, Da Quan Zhang and Wei Wu

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the…

Abstract

Purpose

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the enhancement of the volatile corrosion inhibition prevention performance of amino acids.

Design/methodology/approach

The carbon dots-montmorillonite (DMT) hybrid material is prepared via hydrothermal process. The effect of the DMT-modified alanine as VCI for mild steel is investigated by volatile inhibition sieve test, volatile corrosion inhibition ability test, electrochemical measurement and surface analysis technology. It demonstrates that the DMT hybrid materials can improve the ability of alanine to protect mild steel against atmospheric corrosion effectively. The presence of carbon dots enlarges the interlamellar spacing of montmorillonite and allows better dispersion of alanine. The DMT-modified alanine has higher volatilization ability and an excellent corrosion inhibition of 85.3% for mild steel.

Findings

The DMT hybrid material provides a good template for the distribution of VCI, which can effectively improve the vapor-phase antirust property of VCI.

Research limitations/implications

The increased volatilization rate also means increased VCI consumption and higher costs.

Practical implications

Provides a new way of thinking to replace the traditional toxic and harmful VCI.

Originality/value

For the first time, amino acids are combined with nano laminar structures, which are used to solve the problem of difficult volatilization of amino acids.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 December 2023

Halime Morovati, Mohammad Reza Noorbala, Mansoor Namazian, Hamid R. Zare and Ahmad Ali Dehghani-Firouzabadi

The main purpose of the present work is to introduce two new Schiff bases as corrosion inhibitors (CIs) for carbon steel (CS). The anti-corrosion performance of these Schiff bases…

Abstract

Purpose

The main purpose of the present work is to introduce two new Schiff bases as corrosion inhibitors (CIs) for carbon steel (CS). The anti-corrosion performance of these Schiff bases having N and S heteroatoms in their structures was investigated and compared in 2 M HCl electrolyte. The inhibitory activity of these Schiff bases was also assessed.

Design/methodology/approach

Common electrochemical assays like potentiodynamic polarization and electrochemical impedance measurements were used to evaluate the ability of compounds in reduction of the rate of corrosion. Quantum chemical calculations (QCCs) were also used to examine the corrosion inhibitive and the process related to the electrical and structural characteristics of the molecules acting as CIs.

Findings

The electrochemical measurements indicate that both Schiff bases acted as the efficient CIs of CS in 2 M HCl electrolyte. The adsorption of the Schiff base on the surface of the CS caused the corrosion to be inhibited. The change of Gibbs energies indicated that both physical and chemical interactions are involved in the adsorption of NNS and SNS on CS surfaces. The predicted QCCs of the CIs neutral and positively charged versions were well-aligned with those obtained by electrochemical experiments.

Originality/value

Using electrochemical experiments and quantum chemical modelings, two new Schiff bases, N-2-((2-nitrophenyl)thio)phenyl)-1-(pyrrole-2-yl)methanimine (NNS) and N-2-((2-nitrophenyl)thio)phenyl)-1-(thiophen-2-yl)methanimine (SNS), were evaluated as anti-corrosion agents for CS in 2 M HCl electrolyte. The DFT calculations were considered to compute the quantum chemical parameters of the inhibitors.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 27 May 2022

Razieh Farahati, Ali Ghaffarinejad and S. Morteza Mousavi-Khoshdel

This paper aims to investigate the corrosion inhibition ability of 4–(4-nitrophenyl) thiazol-2-amine (NPT) on the copper in 1 M HCl.

Abstract

Purpose

This paper aims to investigate the corrosion inhibition ability of 4–(4-nitrophenyl) thiazol-2-amine (NPT) on the copper in 1 M HCl.

Design/methodology/approach

The corrosion inhibitory ability of NPT on the copper in 1 M HCl was studied by electrochemical impedance spectroscopy, scanning electron microscopy and atomic force microscopy. Theoretical calculations (molecular dynamics simulation, density functional theory and the nucleus independent chemical shift [NICS] as aromaticity indicator of the molecule) were also performed.

Findings

The corrosion inhibition efficacy of this compound was about 80%. Nyquist plots display a small arc contributed to the film or oxide layer resistance and a large loop associated with charge transfer resistance. The inhibitor adsorption was under Langmuir’s adsorption model. ΔG0ads values point to the presence of physical and chemical adsorption. Results of quantum chemical calculations showed that NPT has better interaction with copper than NPTH+. NICS of NPT in benzene or thiazole rings was less negative compared to NICS of NPTH+. Thus NPT shows less aromaticity compared with NPTH+, showing NPT can have better interaction with copper than NPTH+. NPT had more negative Eint value and more interactions with the Cu relative to NPTH+, this result was in agreement with the results of quantum chemical calculations.

Originality/value

NPT is an efficient corrosion inhibitor for copper in HCl. Theoretical calculations showed that NPT can have better interaction with copper than NPTH+. The results of the theoretical studies were in good agreement with the experimental studies.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 April 2024

Aashiq Hussain Lone and Irfana Rashid

This study aims to investigate the landscape of family-based organic farm businesses in the Kashmir Valley, India, analyzing the factors that either facilitate or hinder their…

Abstract

Purpose

This study aims to investigate the landscape of family-based organic farm businesses in the Kashmir Valley, India, analyzing the factors that either facilitate or hinder their adoption. The research also intends to uncover sources of information seeking. The primary purpose is to provide qualitative evidence to address existing knowledge gaps and offer insights for promoting sustainable farm practices in the region.

Design/methodology/approach

The research employs a qualitative approach, drawing on focus group interviews. The study thoroughly explores the background and relevant literature, utilizing a comprehensive research framework. Data is collected from family based farmers engaged in organic farming practices in the Kashmir Valley. The data is analyzed using content analysis ensuring a robust and thorough exploration of the subject matter.

Findings

This study reveals a notable transition in the agricultural landscape of the Kashmir Valley, showcasing a widespread adoption of organic farming on considerable land. The study reveals that key facilitators for organic farming among family-based farms are farm productivity, entrepreneurial intention, governance, environmental consciousness, and health concerns. The exchange of information, both through formal and informal channels, is found to be a crucial factor influencing the adoption of organic farming. The study also unveiled significant inhibitors that hinder the adoption of organic farming on commercial scales, including on-farm challenges such as difficulties in acquiring inputs and facing reduced yields, market-related concerns, and a lack of support and assistance from government agencies.

Originality/value

This research contributes significantly to the existing literature by advancing the understanding of organic farm business and agri-entrepreneurship. It unveils key factors that either support or hinder family-based organic farms, identifying crucial information sources and presenting valuable insights for policymakers. Furthermore, this study provides practical guidance for overcoming obstacles, enhancing infrastructure, and translating identified facilitators into successful agri-ventures in the Kashmir region.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 17 July 2023

Xinyue Hao and Emrah Demir

Decision-making, reinforced by artificial intelligence (AI), is predicted to become potent tool within the domain of supply chain management. Considering the importance of this…

Abstract

Purpose

Decision-making, reinforced by artificial intelligence (AI), is predicted to become potent tool within the domain of supply chain management. Considering the importance of this subject, the purpose of this study is to explore the triggers and technological inhibitors affecting the adoption of AI. This study also aims to identify three-dimensional triggers, notably those linked to environmental, social, and governance (ESG), as well as technological inhibitors.

Design/methodology/approach

Drawing upon a six-step systematic review following the preferred reporting items for systematic reviews and meta analysis (PRISMA) guidelines, a broad range of journal publications was recognized, with a thematic analysis under the lens of the ESG framework, offering a unique perspective on factors triggering and inhibiting AI adoption in the supply chain.

Findings

In the environmental dimension, triggers include product waste reduction and greenhouse gas emissions reduction, highlighting the potential of AI in promoting sustainability and environmental responsibility. In the social dimension, triggers encompass product security and quality, as well as social well-being, indicating how AI can contribute to ensuring safe and high-quality products and enhancing societal welfare. In the governance dimension, triggers involve agile and lean practices, cost reduction, sustainable supplier selection, circular economy initiatives, supply chain risk management, knowledge sharing and the synergy between supply and demand. The inhibitors in the technological category present challenges, encompassing the lack of regulations and rules, data security and privacy concerns, responsible and ethical AI considerations, performance and ethical assessment difficulties, poor data quality, group bias and the need to achieve synergy between AI and human decision-makers.

Research limitations/implications

Despite the use of PRISMA guidelines to ensure a comprehensive search and screening process, it is possible that some relevant studies in other databases and industry reports may have been missed. In light of this, the selected studies may not have fully captured the diversity of triggers and technological inhibitors. The extraction of themes from the selected papers is subjective in nature and relies on the interpretation of researchers, which may introduce bias.

Originality/value

The research contributes to the field by conducting a comprehensive analysis of the diverse factors that trigger or inhibit AI adoption, providing valuable insights into their impact. By incorporating the ESG protocol, the study offers a holistic evaluation of the dimensions associated with AI adoption in the supply chain, presenting valuable implications for both industry professionals and researchers. The originality lies in its in-depth examination of the multifaceted aspects of AI adoption, making it a valuable resource for advancing knowledge in this area.

Details

Journal of Modelling in Management, vol. 19 no. 2
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 10 October 2023

Vivek Gopi and Saleeshya P.G.

Small and medium-scale enterprises (SMEs) that operate with modest financial investments and commodities face numerous challenges to remain in business. One major philosophy used…

70

Abstract

Purpose

Small and medium-scale enterprises (SMEs) that operate with modest financial investments and commodities face numerous challenges to remain in business. One major philosophy used by SMEs these days is the implementation of lean manufacturing to get solutions for various issues they encounter. But is lean getting sustained over time? The purpose of this research is to design a Sustainable Lean Performance Index (SLPI) to assess the sustainability of lean systems and to pinpoint the variables that might be present as potential lean system inhibitors which hinder the sustainability of leanness.

Design/methodology/approach

A multi-level sustainable lean performance model is constructed and presented based on the literature research, field investigation and survey conducted by administering a questionnaire. Fuzzy logic approach is used to analyse the multi-level model.

Findings

SLPI for the SMEs is found using fuzzy logic approach. Additionally, the ranking score system is applied to categorise attributes into weak and strong categories. The performance of the current lean system is determined to be “fair” based on the Euclidean distance approach and the SLPI for SMEs.

Research limitations/implications

This work is concentrated only in South India because of the country’s vast geographical area and rich and wide diversity in industrial culture of the nation. Hence, more work can be done incorporating the other parts of the country and can analyse the lean behaviour in a comparative manner.

Practical implications

The generalised sustainable lean model analysed using fuzzy logic identifies the inhibitors and level of performance of SMEs in South India. This can be implemented to find out the level of performance in the SMEs after a deeper study and analysis around the SMEs of the country.

Originality

The sustainable assessment of lean parameters in the SMEs of India is found to be very less in literature, and it lacks profundity. The model established in this study assesses the sustainability of the lean methodology adopted in SMEs by considering the lean and sustainability attributes along with enablers like technology, ethics, customer satisfaction and innovation with the aid of fuzzy logic.

Details

Journal of Modelling in Management, vol. 19 no. 3
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 6 February 2024

Rahul Sindhwani, Abhishek Behl, Vijay Pereira, Yama Temouri and Sushmit Bagchi

The COVID-19 pandemic has showcased the lack of resilience found in the global value chains (GVCs) of multinational enterprises (MNEs). Existing evidence shows that MNEs have only…

Abstract

Purpose

The COVID-19 pandemic has showcased the lack of resilience found in the global value chains (GVCs) of multinational enterprises (MNEs). Existing evidence shows that MNEs have only recently and slowly started recovering and attempting to rebuild the resilience of their GVCs. This paper analyzes the challenges/inhibitors faced by MNEs in building their resilience through their GVCs.

Design/methodology/approach

A four-stage hybrid model was used to identify the interrelationship among the identified inhibitors and to distinguish the most critical ones by ranking them. In the first stage, we employed a modified total interpretive structural modeling (m-TISM) approach to determine the inter-relationship among the inhibitors. Additionally, we identified the inhibitors' driving power and dependency by performing a matrix multiplication applied to classification (MICMAC) analysis. In the second stage, we employed the Pythagorean fuzzy analytic hierarchy process (PF-AHP) method to determine the weight of the criteria. The next stage followed, in which we used the Pythagorean fuzzy combined compromise solution (PF-CoCoSo) method to rank the inhibitors. Finally, we performed a sensitivity analysis to determine the robustness of the framework we had built based on the criteria and inhibitors.

Findings

We find business sustainability to have the highest importance and managerial governance as the most critical inhibitor hindering the path to resilience. Based on these insights, we derive four research propositions aimed at strengthening the resilience of such GVCs, followed by their implications for theory and practice.

Originality/value

Our findings contribute to the extant literature by uncovering key inhibitors that act as barriers to MNEs. We link out our findings with a number of propositions that we derive, which may be considered for implementation by MNEs and could help them endow their GVCs with resilience.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

1 – 10 of 157