Search results

1 – 5 of 5
Article
Publication date: 30 January 2018

Saeid Masoumi, Hassan Hajghassem, Alireza Erfanian and Ahmad Molaei Rad

Smart sensors based on graphene field effect transistor (GFET) and biological receptors are regarded as a promising nanomaterial that could be the basis for future generation of…

Abstract

Purpose

Smart sensors based on graphene field effect transistor (GFET) and biological receptors are regarded as a promising nanomaterial that could be the basis for future generation of low-power, faster, selective real-time monitoring of target analytes and smaller electronics. So, the purpose of this paper is to provide details of sensors based on selective nanocoatings by combining trinitrotoluene (TNT) receptors (Trp-His-Trp) bound to conjugated polydiacetylene polymers on a graphene channel in GFET for detecting explosives TNT.

Design/methodology/approach

Following an introduction, this paper describes the way of manufacturing of the GFET sensor by using investigation methods for transferring graphene sheet from Cu foil to target substrates, which is functionalized by the TNT peptide receptors, to offer a system which has the capability of answering the presence of related target molecules (TNT). Finally, brief conclusions are drawn.

Findings

In a word, shortly after graphene discovery, it has been explored with a variety of methods gradually. Because of its exceptional electrical properties (e.g. extremely high carrier mobility and capacity), electrochemical properties such as high electron transfer rate and structural properties, graphene has already showed great potential and success in chemical and biological sensing fields. Therefore, the authors used a biological receptor with a field effect transistor (FET) based on graphene to fabricate sensor for achieving high sensitivity and selectivity that can detect explosive substances such as TNT. The transport property changed compared to that of the FET made by intrinsic graphene, that is, the Dirac point position moved from positive Vg to negative Vg, indicating the transition of graphene from p-type to n-type after annealing in TNT, and the results show the bipolar property change of GFET with the TNT concentration and the possibility to develop a robust, easy-to-use and low-cost TNT detection method for performing a sensitive, reliable and semi-quantitative detection in a wide detection range.

Originality/value

In this timeframe of history, TNT is a common explosive used in both military and industrial settings. Its convenient handling properties and explosive strength make it a common choice in military operations and bioterrorism. TNT and other conventional explosives are the mainstays of terrorist bombs and the anti-personnel mines that kill or injure more than 15,000 people annually in war-torn countries. In large, open-air environments, such as airports, train stations and minefields, concentrations of these explosives can be vanishingly small – a few parts of TNT, for instance, per trillion parts of air. That can make it impossible for conventional bomb and mine detectors to detect the explosives and save lives. So, in this paper, the authors report a potential solution with design and manufacture of a GFET sensor based on a biological receptor for real-time detection of TNT explosives specifically.

Details

Sensor Review, vol. 38 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 30 August 2019

Saeid Masoumi and Hassan Hajghassem

Smart biosensors that can perform sensitive and selective monitoring of target analytes are tremendously valuable for trinitrotoluene (TNT) explosive detection. In this research…

Abstract

Purpose

Smart biosensors that can perform sensitive and selective monitoring of target analytes are tremendously valuable for trinitrotoluene (TNT) explosive detection. In this research, the pre-developed sensor was integrated with biological receptors in which they enhanced the sensitivity of the sensor. This is due to conjugated polydiacetylene onto a peptide-based molecular recognition element (Trp-His-Trp) for TNT molecules in graphene field-effect transistors (GR-FETs) as biosensor that is capable of responding to the presence of a TNT target with a colorimetric response. The authors confirmed the efficacy of the receptor while being attached to polydiacetylene (PDA) by observing the binding ability between the Trp-His-Trp and TNT to alter the electronic band structure of the PDA conjugated backbones. The purpose of this paper is to demonstrate a modular system capable of transducing small-molecule TNT binding into a detectable signal. The details of the real-time and selective TNT biosensor have been reported.

Design/methodology/approach

Following an introduction, this paper describes the way of fabrication GR-FETs with conventional photolithography techniques and the other processes, which is functionalized by the TNT peptide receptors. The authors first determined the essential TNT recognition elements from UV-visible spectrophotometry spectroscopy for PDA sensor unit fabrication. In particular, the blue percentage and the chromic response were used to characterize the polymerization parameter of the conjugated p backbone. A continuous-flow trace vapor source of nitroaromatics (two, four, six-TNT) was designed and evaluated in terms of temperature dependence. The TNT concentration was measured by liquid/gas extraction in acetonitrile using bubbling sequence. The sensor test is performed using a four-point probe and semiconductor analyzer. Finally, brief conclusions are drawn.

Findings

Because of their unique optical and stimuli-response properties, the polydiacetylene and peptide-based platforms have been explored as an alternative to complex mechanical and electrical sensing systems. Therefore, the authors have used GR-FETs with biological receptor-PDAs as a biosensor for achieving high sensitivity and selectivity that can detect explosive substances such as TNT. The transport property changed compared to that of the field-effect transistors made by intrinsic graphene, that is, the Dirac point position moved from positive Vg to negative Vg, indicating the transition of graphene from p-type to n-type after annealing in TNT, and when the device was tested from RT, the response of the device was found to increase linearly with increasing concentrations. Average shifting rate of the Dirac peak was obtained as 0.1-0.3 V/ppm. The resulting sensors exhibited at the limit ppm sensitivity toward TNT in real-time, with excellent selectivity over various similar aromatic compounds. The biological receptor coating may be useful for the development of sensitive and selective micro and nanoelectronic sensor devices for various other target analytes.

Originality/value

The detection of illegally transported explosives has become important as the global rise in terrorism subsequent to the events of September 11, 2001, and is at the forefront of current analytical problems. It is essential that a detection method has the selectivity to distinguish among compounds in a mixture of explosives. So, the authors are reporting a potential solution with the designing and manufacturing of electrochemical biosensor using polydiacetylene conjugated with peptide receptors coated on GR-FETs with the colorimetric response for real-time detection of TNT explosives specifically.

Details

Sensor Review, vol. 39 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 January 2014

Robert Bogue

– This paper aims to provide a detailed review of gas sensor research which exploits the properties of nanomaterials and nanostructures.

1973

Abstract

Purpose

This paper aims to provide a detailed review of gas sensor research which exploits the properties of nanomaterials and nanostructures.

Design/methodology/approach

Following an introduction, this paper discusses developments in gas sensors based on carbon nanotubes, titanium dioxide nanotubes, graphene, nanocrystalline diamond and a range of metal oxide nanomaterials. It concludes with a discussion of this research and its commercial potential and a list of references to the research considered in the main text.

Findings

Gas sensors based on a multitude of nanomaterials are the subject of a global research effort which has generated an extensive literature. Prototype devices have been developed which respond to numerous important gases at concentrations which correspond well with industrial requirements. Other critical performance characteristics have been studied extensively and the results suggest commercial prospects for these technologies.

Originality/value

This paper provides details of the highly topical field of nanomaterial-based gas sensor research.

Details

Sensor Review, vol. 34 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Content available
Article
Publication date: 29 March 2011

427

Abstract

Details

Sensor Review, vol. 31 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 31 January 2020

Marco Coco and Giovanni Nastasi

The purpose of this paper is to simulate charge transport in monolayer graphene on a substrate made of hexagonal boron nitride (h-BN). This choice is motivated by the fact that…

Abstract

Purpose

The purpose of this paper is to simulate charge transport in monolayer graphene on a substrate made of hexagonal boron nitride (h-BN). This choice is motivated by the fact that h-BN is one of the most promising substrates on account of the reduced degradation of the velocity due to the remote impurities.

Design/methodology/approach

The semiclassical Boltzmann equations for electrons in the monolayer graphene are numerically solved by an approach based on a discontinuous Galerkin (DG) method. Both the conduction and valence bands are included, and the inter-band scatterings are taken into account as well.

Findings

The importance of the inter-band scatterings is accurately evaluated for several values of the Fermi energy, addressing the issue related to the validity of neglecting the generation-recombination terms. It is found out that the inclusion of the inter-band scatterings produces sizable variations in the average values, like the current density, at zero Fermi energy, whereas, as expected, the effect of the inter-band scattering becomes negligible by increasing the absolute value of the Fermi energy.

Research limitations/implications

The correct evaluation of the influence of the inter-band scatterings on the electronic performances is deeply important not only from a theoretical point of view but also for the applications. In particular, it will be shown that the time necessary to reach the steady state is greatly affected by the inter-band scatterings, with not negligible consequences on the switching on/off processes of realistic devices. As a limitation of the present work, the proposed approach refers to the spatially homogeneous case. For the simulation of electron devices, non-homogenous numerical solutions are required. This last case will be tackled in a forthcoming paper.

Originality/value

As observed in Majorana et al. (2019), the use of a Direct Simulation Monte Carlo (DSMC) approach, which properly describes the inter-band scatterings, is computationally very expensive because the valence band is highly populated and a huge number of particles is needed. Even by simulating holes instead of electrons does not overcome the problem because there is a certain degree of ambiguity in the generation and recombination terms of electron-hole pairs. The DG approach, used in this paper, does not suffer from the previous drawbacks and requires a reasonable computing effort.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 5 of 5