To read this content please select one of the options below:

Design of the trinitrotoluene biosensor using polydiacetylene conjugated with peptide receptors coated on GR-FETs with colorimetric response

Saeid Masoumi (Department of Electronic Engineering, Tasouj Branch, Islamic Azad University, Tasouj, Iran)
Hassan Hajghassem (Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran)

Sensor Review

ISSN: 0260-2288

Article publication date: 30 August 2019

Issue publication date: 5 November 2019

199

Abstract

Purpose

Smart biosensors that can perform sensitive and selective monitoring of target analytes are tremendously valuable for trinitrotoluene (TNT) explosive detection. In this research, the pre-developed sensor was integrated with biological receptors in which they enhanced the sensitivity of the sensor. This is due to conjugated polydiacetylene onto a peptide-based molecular recognition element (Trp-His-Trp) for TNT molecules in graphene field-effect transistors (GR-FETs) as biosensor that is capable of responding to the presence of a TNT target with a colorimetric response. The authors confirmed the efficacy of the receptor while being attached to polydiacetylene (PDA) by observing the binding ability between the Trp-His-Trp and TNT to alter the electronic band structure of the PDA conjugated backbones. The purpose of this paper is to demonstrate a modular system capable of transducing small-molecule TNT binding into a detectable signal. The details of the real-time and selective TNT biosensor have been reported.

Design/methodology/approach

Following an introduction, this paper describes the way of fabrication GR-FETs with conventional photolithography techniques and the other processes, which is functionalized by the TNT peptide receptors. The authors first determined the essential TNT recognition elements from UV-visible spectrophotometry spectroscopy for PDA sensor unit fabrication. In particular, the blue percentage and the chromic response were used to characterize the polymerization parameter of the conjugated p backbone. A continuous-flow trace vapor source of nitroaromatics (two, four, six-TNT) was designed and evaluated in terms of temperature dependence. The TNT concentration was measured by liquid/gas extraction in acetonitrile using bubbling sequence. The sensor test is performed using a four-point probe and semiconductor analyzer. Finally, brief conclusions are drawn.

Findings

Because of their unique optical and stimuli-response properties, the polydiacetylene and peptide-based platforms have been explored as an alternative to complex mechanical and electrical sensing systems. Therefore, the authors have used GR-FETs with biological receptor-PDAs as a biosensor for achieving high sensitivity and selectivity that can detect explosive substances such as TNT. The transport property changed compared to that of the field-effect transistors made by intrinsic graphene, that is, the Dirac point position moved from positive Vg to negative Vg, indicating the transition of graphene from p-type to n-type after annealing in TNT, and when the device was tested from RT, the response of the device was found to increase linearly with increasing concentrations. Average shifting rate of the Dirac peak was obtained as 0.1-0.3 V/ppm. The resulting sensors exhibited at the limit ppm sensitivity toward TNT in real-time, with excellent selectivity over various similar aromatic compounds. The biological receptor coating may be useful for the development of sensitive and selective micro and nanoelectronic sensor devices for various other target analytes.

Originality/value

The detection of illegally transported explosives has become important as the global rise in terrorism subsequent to the events of September 11, 2001, and is at the forefront of current analytical problems. It is essential that a detection method has the selectivity to distinguish among compounds in a mixture of explosives. So, the authors are reporting a potential solution with the designing and manufacturing of electrochemical biosensor using polydiacetylene conjugated with peptide receptors coated on GR-FETs with the colorimetric response for real-time detection of TNT explosives specifically.

Keywords

Citation

Masoumi, S. and Hajghassem, H. (2019), "Design of the trinitrotoluene biosensor using polydiacetylene conjugated with peptide receptors coated on GR-FETs with colorimetric response", Sensor Review, Vol. 39 No. 6, pp. 819-827. https://doi.org/10.1108/SR-11-2018-0306

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Related articles