Search results

1 – 10 of 667
Article
Publication date: 30 January 2018

Saeid Masoumi, Hassan Hajghassem, Alireza Erfanian and Ahmad Molaei Rad

Smart sensors based on graphene field effect transistor (GFET) and biological receptors are regarded as a promising nanomaterial that could be the basis for future generation of…

Abstract

Purpose

Smart sensors based on graphene field effect transistor (GFET) and biological receptors are regarded as a promising nanomaterial that could be the basis for future generation of low-power, faster, selective real-time monitoring of target analytes and smaller electronics. So, the purpose of this paper is to provide details of sensors based on selective nanocoatings by combining trinitrotoluene (TNT) receptors (Trp-His-Trp) bound to conjugated polydiacetylene polymers on a graphene channel in GFET for detecting explosives TNT.

Design/methodology/approach

Following an introduction, this paper describes the way of manufacturing of the GFET sensor by using investigation methods for transferring graphene sheet from Cu foil to target substrates, which is functionalized by the TNT peptide receptors, to offer a system which has the capability of answering the presence of related target molecules (TNT). Finally, brief conclusions are drawn.

Findings

In a word, shortly after graphene discovery, it has been explored with a variety of methods gradually. Because of its exceptional electrical properties (e.g. extremely high carrier mobility and capacity), electrochemical properties such as high electron transfer rate and structural properties, graphene has already showed great potential and success in chemical and biological sensing fields. Therefore, the authors used a biological receptor with a field effect transistor (FET) based on graphene to fabricate sensor for achieving high sensitivity and selectivity that can detect explosive substances such as TNT. The transport property changed compared to that of the FET made by intrinsic graphene, that is, the Dirac point position moved from positive Vg to negative Vg, indicating the transition of graphene from p-type to n-type after annealing in TNT, and the results show the bipolar property change of GFET with the TNT concentration and the possibility to develop a robust, easy-to-use and low-cost TNT detection method for performing a sensitive, reliable and semi-quantitative detection in a wide detection range.

Originality/value

In this timeframe of history, TNT is a common explosive used in both military and industrial settings. Its convenient handling properties and explosive strength make it a common choice in military operations and bioterrorism. TNT and other conventional explosives are the mainstays of terrorist bombs and the anti-personnel mines that kill or injure more than 15,000 people annually in war-torn countries. In large, open-air environments, such as airports, train stations and minefields, concentrations of these explosives can be vanishingly small – a few parts of TNT, for instance, per trillion parts of air. That can make it impossible for conventional bomb and mine detectors to detect the explosives and save lives. So, in this paper, the authors report a potential solution with design and manufacture of a GFET sensor based on a biological receptor for real-time detection of TNT explosives specifically.

Details

Sensor Review, vol. 38 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 30 June 2021

Hui Li, Zengwen Zhang, Ruiyang Fang, Zhihui Gao and Wei He

The authors designed those experiments to test the sensitivity of graphene when it is exposed to NO2 gas, to find a way to decrease the recovery time of graphene and to find the…

100

Abstract

Purpose

The authors designed those experiments to test the sensitivity of graphene when it is exposed to NO2 gas, to find a way to decrease the recovery time of graphene and to find the difference effect between monolayer and bilayer graphene in the experiments.

Design/methodology/approach

The authors transferred graphene from film on Cu foil to NO2 sensor sample and measured the resistances of on monolayer and bilayer graphene when they were exposed to NO2 gas under different concentration; then, the authors obtained the results.

Findings

The results show that monolayer graphene exhibits a linear response when the NO2 concentration is below 20 ppm. But the monolayer graphene will not be so sensitive to NO2 gas when the concentration continues to reduce. The desorption time of monolayer graphene is longer when compared with bilayer graphene. It shows faster recovery time and higher response of bilayer graphene under low NO2 concentration. And the limit detectable NO2 concentration of bilayer graphene is 50 ppb. Desorption time of bilayer graphene is shortened to below 20 s under UV light.

Originality/value

The authors found a reliable way to decrease the recovery time of graphene when it is exposed NO2 gas and got the concrete data.

Details

Sensor Review, vol. 41 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 January 2019

Zeynep Burcu Acunaş Karagöz, Selman Demirtaş, Hakan Kaleli, Levent Yüksek and Emre Çıtak

This study aims to find out friction and wear characteristics of graphene and graphene coating deposited by the Chemical Vapor Deposition (CVD) process on Honda GX270 engine…

Abstract

Purpose

This study aims to find out friction and wear characteristics of graphene and graphene coating deposited by the Chemical Vapor Deposition (CVD) process on Honda GX270 engine (nodular cast iron) piston rings experimentally investigated under boundary lubricated conditions.

Design/methodology/approach

This study consists of two stages: tribotest and engine tests. First test was conducted through a reciprocating tribotest machine and second test was conducted through an engine bench with a duration of 75h. Engine piston ring was coated with graphene by two different methods: transfer method and direct CVD method.

Findings

Graphene has been demonstrated to be a potential and promising candidate for wear- and scratch-resistant coating because it is the thinnest, lightest and strongest known nanomaterial. In this case, the ability of a mono-layer graphene film to withstand high pressure differences (6 atm) indicates its mechanical robustness. It can effectively prevent or reduce mechanical failure by strengthening and toughening the loaded surface as well as by transferring the stress throughout the structure. The positive tribological outcomes of the graphene reinforced material under various dynamic loads revealed the potential of graphene-based coatings in macro - and micro-tribology.

Originality/value

This study fulfils an identified need to study for automotive industry a coating which is wear and scratch resistant.

Details

Industrial Lubrication and Tribology, vol. 72 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 August 2019

Saeid Masoumi and Hassan Hajghassem

Smart biosensors that can perform sensitive and selective monitoring of target analytes are tremendously valuable for trinitrotoluene (TNT) explosive detection. In this research…

Abstract

Purpose

Smart biosensors that can perform sensitive and selective monitoring of target analytes are tremendously valuable for trinitrotoluene (TNT) explosive detection. In this research, the pre-developed sensor was integrated with biological receptors in which they enhanced the sensitivity of the sensor. This is due to conjugated polydiacetylene onto a peptide-based molecular recognition element (Trp-His-Trp) for TNT molecules in graphene field-effect transistors (GR-FETs) as biosensor that is capable of responding to the presence of a TNT target with a colorimetric response. The authors confirmed the efficacy of the receptor while being attached to polydiacetylene (PDA) by observing the binding ability between the Trp-His-Trp and TNT to alter the electronic band structure of the PDA conjugated backbones. The purpose of this paper is to demonstrate a modular system capable of transducing small-molecule TNT binding into a detectable signal. The details of the real-time and selective TNT biosensor have been reported.

Design/methodology/approach

Following an introduction, this paper describes the way of fabrication GR-FETs with conventional photolithography techniques and the other processes, which is functionalized by the TNT peptide receptors. The authors first determined the essential TNT recognition elements from UV-visible spectrophotometry spectroscopy for PDA sensor unit fabrication. In particular, the blue percentage and the chromic response were used to characterize the polymerization parameter of the conjugated p backbone. A continuous-flow trace vapor source of nitroaromatics (two, four, six-TNT) was designed and evaluated in terms of temperature dependence. The TNT concentration was measured by liquid/gas extraction in acetonitrile using bubbling sequence. The sensor test is performed using a four-point probe and semiconductor analyzer. Finally, brief conclusions are drawn.

Findings

Because of their unique optical and stimuli-response properties, the polydiacetylene and peptide-based platforms have been explored as an alternative to complex mechanical and electrical sensing systems. Therefore, the authors have used GR-FETs with biological receptor-PDAs as a biosensor for achieving high sensitivity and selectivity that can detect explosive substances such as TNT. The transport property changed compared to that of the field-effect transistors made by intrinsic graphene, that is, the Dirac point position moved from positive Vg to negative Vg, indicating the transition of graphene from p-type to n-type after annealing in TNT, and when the device was tested from RT, the response of the device was found to increase linearly with increasing concentrations. Average shifting rate of the Dirac peak was obtained as 0.1-0.3 V/ppm. The resulting sensors exhibited at the limit ppm sensitivity toward TNT in real-time, with excellent selectivity over various similar aromatic compounds. The biological receptor coating may be useful for the development of sensitive and selective micro and nanoelectronic sensor devices for various other target analytes.

Originality/value

The detection of illegally transported explosives has become important as the global rise in terrorism subsequent to the events of September 11, 2001, and is at the forefront of current analytical problems. It is essential that a detection method has the selectivity to distinguish among compounds in a mixture of explosives. So, the authors are reporting a potential solution with the designing and manufacturing of electrochemical biosensor using polydiacetylene conjugated with peptide receptors coated on GR-FETs with the colorimetric response for real-time detection of TNT explosives specifically.

Details

Sensor Review, vol. 39 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 13 January 2020

Noor Ayuma Mat Tahir, Mohd Fadzli Bin Abdollah, Noreffendy Tamaldin, Hilmi Amiruddin, Mohd Rody Bin Mohamad Zin and S. Liza

This paper aims to examine the friction and wear performance of the graphene synthesized from fruit cover plastic waste and oil palm fiber (OPF).

Abstract

Purpose

This paper aims to examine the friction and wear performance of the graphene synthesized from fruit cover plastic waste and oil palm fiber (OPF).

Design/methodology/approach

The graphene was synthesized by using a chemical vapor deposition method, where a copper sheet was used as the substrate. The dry sliding test was performed by using a micro ball-on-disc tribometer at various sliding speeds and applied loads.

Findings

The results show that both as-grown graphenes decrease the coefficient of friction significantly. Likewise, the wear rate is also lower at higher sliding speed and applied load. For this study, OPF is proposed as the best solid carbon source for synthesizing the graphene.

Originality/value

The main contribution of this study is opening a new perspective on the potentials of producing graphene from solid waste materials and its effect on the tribological performance.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0486

Details

Industrial Lubrication and Tribology, vol. 72 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 April 2020

Diana-Maria Chiș and Emil Lucian Crișan

The purpose of this paper is to develop a theoretical framework for technology transfer success factors from a technology provider viewpoint and to test this framework considering…

Abstract

Purpose

The purpose of this paper is to develop a theoretical framework for technology transfer success factors from a technology provider viewpoint and to test this framework considering the perceptions of graphene researchers from a Romanian research project (Graphene4Life).

Design/methodology/approach

The authors conducted a literature review and a case study with three units of analysis. Semi-structured face-to-face interviews and content analysis were used.

Findings

The five-category framework for technology transfer success factors from a technology provider viewpoint, which portrays success factors in an expansive way from technology to the market (technology, organization, context, collaboration and customer absorptive capacity factors), is confirmed by the qualitative analysis, while new factors in all categories are discovered.

Research limitations/implications

The results are limited given the qualitative nature of this research. The extrapolation of the results to other technologies and contexts is a scientific challenge.

Originality/value

In this paper, the authors develop, based on a detailed literature review, a framework for technology success factors from a technology provider viewpoint, which classifies technology transfer success factors in an expansive way from technology to the market (technology, organization, context, collaboration and customer absorptive capacity factors). Technology itself is settled as the foundation of the framework, underlining the need for a technology-driven technology transfer process. In comparison to existing frameworks that analyze technology transfer success factors, the present framework is a more complex one, covering all facets of the technology process. The new factors discovered through the qualitative analysis are also an important contribution of this research.

Details

Journal of Science and Technology Policy Management, vol. 11 no. 2
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 13 June 2018

Zahra Shams Ghahfarokhi, Mojtaba Bagherzadeh, Ebrahim Ghiamati Yazdi and Abbas Teimouri

The purpose of this paper is study of the type of functional group and its situation on phenyl molecule, in increasing the corrosion protection of modified graphene layers by it…

Abstract

Purpose

The purpose of this paper is study of the type of functional group and its situation on phenyl molecule, in increasing the corrosion protection of modified graphene layers by it. Corrosion protection efficiency of graphene was raised via modifying the surface of graphene-coated carbon steel (CS/G) by using aromatic molecules. Phenyl groups with three different substitutions including COOH, NO2 and CH3 grafted to graphene via diazonium salt formation route, by using carboxy phenyl, nitro phenyl and methyl phenyl diazonium salts in ortho, meta and para spatial situations.

Design/methodology/approach

Molecular bindings were characterized by using X-ray diffractometer, fourier-transform infrared spectroscopy (FTIR), Raman and scanning electron microscopy (SEM)/ energy dispersive X-ray analysis (EDXA) methods. Anti-corrosion performance of modified CS/G electrodes was evaluated by weight loss and electrochemical techniques, potentiodynamic polarization (Tafel) and electrochemical impedance spectroscopy, in 3.5 per cent NaCl solution.

Findings

The obtained results confirmed covalently bonding of phenyl groups to the graphene surface. Also, the observed results showed that substitution spatial situations on phenyl groups can affect charge transfer resistance (Rct), corrosion potential (Ecorr), corrosion current density (jcorr) and the slope of the anodic and cathodic reaction (ßa,c), demonstrating that the proposed modification method can hinder the corrosion reactions. The proposed modification led to restoring the graphene surface defects and consequently increasing its corrosion protection efficiency.

Originality/value

The obtained results from electrochemical methods proved that protection efficiency was observed in order COOH < NO2 < CH3 and MPD in the para spatial situation and showed the maximum protection efficiency of 98.6 per cent in comparison to other substitutions. Finally, the ability of proposed graphene surface modification route was further proofed by using surface methods, i.e. SEM and EDXA, and contact angles measurements.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 10 January 2020

Yong Qian, Hongying Gong, Xiaoyun Zhao, Lei Cao, Weizhong Shi and Jianli He

The purpose of this study is to corroborate the advanced tribological properties of graphene as a lubricant additive.

Abstract

Purpose

The purpose of this study is to corroborate the advanced tribological properties of graphene as a lubricant additive.

Design/methodology/approach

Different concentrations of functionalized graphene were coated on the substrate surface. Tribological properties of the graphene lubricants were carried out by ball-on-disk tribology tests. Wear mechanism of functionalized graphene was studied by observing wear scars on the substrate surface. Finally, the wear resistance of modified graphene was calculated by calculating and analyzing the applied experimental conditions and the obtained experimental data.

Findings

The best concentration of graphene lubricant is 0.5 wt.% which shows the best tribological performance. And the coefficient of friction is 0.08. Compared with the dry friction condition, the coefficient of friction and wear rate of best graphene lubricant decreased by 80% and 82%.

Originality/value

The formula of graphene lubricant is independently developed and works very well. Graphene lubricant can prevent the substrate from oxidation. The thickness of the graphene lubricant is about 4-7µm. The concept of anti-wear strength was introduced in this paper. When 0.5 Vol.% graphene was added, the anti-wear strength was greatly improved from 115.3 kg·mm-2 to 657.6 kg·mm-2.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0344

Details

Industrial Lubrication and Tribology, vol. 72 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 March 2016

Sahour Sayed, Mohammed Gamil, Ahmed Fath El-Bab, Koichi Nakamura, Toshiyuki Tsuchiya, Osamu Tabata and Ahmed Abd El-Moneim

The purpose of this paper is to develop a new simple technique to synthesize graphene film on a flexible polyethylene terephthalate (PET) substrate and applied as a strain sensor.

Abstract

Purpose

The purpose of this paper is to develop a new simple technique to synthesize graphene film on a flexible polyethylene terephthalate (PET) substrate and applied as a strain sensor.

Design/methodology/approach

Graphene film was synthesized using laser treatment of graphene oxide (GO) film deposited on PET substrate. A universal laser system was used to simultaneously reduce and pattern the GO film into laser reduced graphene oxide (LRGO) film.

Findings

The laser treatment synthesizes a multilayer graphene film with overlapped flakes, which shows structure integrity, mechanical flexibility and electrical conductivity of 1,330 S/m. The developed LRGO/PET film was used to fabricate a high sensitivity strain sensor. The sensitivity and temperature dependency of its gauge factor (GF) was examined at applied strains up to 0.25 per cent and operating temperatures up to 80°C. The fabricated sensor shows stable GF of approximately 78 up to 60°C with standard error of the mean not exceeding approximately ± 0.2.

Originality/value

The proposed method offers a new simple and productive technique of fabricating large-scale graphene-based flexible devices at a low cost.

Details

Sensor Review, vol. 36 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 7 October 2021

Amrita Maddamasetty, Kamesh Bodduru, Siva Bevara, Rukmini Srikant Revuru and Sanjay Kumar

Inconel 718 is difficult to machine due to its high toughness and study hardenability. Though the use of cutting fluids alleviates the problem, it is not sustainable. So, supply…

Abstract

Purpose

Inconel 718 is difficult to machine due to its high toughness and study hardenability. Though the use of cutting fluids alleviates the problem, it is not sustainable. So, supply of a small quantity of specialized coolant to the machining zone or use of a solid lubricant is a possible solution. The purpose of the present work is to improve machinability of Inconel718 using graphene nanoplatelets.

Design/methodology/approach

In the present study, graphene is used in the machining of Inconel 718 alloy. Graphene is applied in the following two forms: as a solid lubricant and as an inclusion in cutting fluid. Graphene-based self-lubricating tool and graphene added nanofluids are prepared and applied to turning of Inconel 718 at varying cutting velocities. Performances are compared by measuring cutting forces, cutting temperature, tool wear and surface roughness.

Findings

Graphene, in both forms, showed superior performance compared to dry machining. In total, 0.3 Wt.% graphene added nanofluids showed the lowest cutting tool temperature and flank wear with 44.95% and 83.37% decrease, respectively, compared to dry machining and lowest surface roughness, 0.424 times compared to dry machining at 87 m/min.

Originality/value

Graphene could improve the machinability of Inconel 718 when used in tools as a solid lubricant and also when used as a dispersant in cutting fluid. Graphene used as a dispersant in cutting fluid is found to be more effective.

Details

World Journal of Engineering, vol. 19 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 667