Search results

1 – 10 of over 2000
Article
Publication date: 1 February 2023

Kaixin Li, Ye He, Kuan Li and Chengguo Liu

With the increasing demands of industrial applications, it is imperative for robots to accomplish good contact-interaction with dynamic environments. Hence, the purpose of this…

Abstract

Purpose

With the increasing demands of industrial applications, it is imperative for robots to accomplish good contact-interaction with dynamic environments. Hence, the purpose of this research is to propose an adaptive fractional-order admittance control scheme to realize a robot–environment contact with high accuracy, small overshoot and fast response.

Design/methodology/approach

Fractional calculus is introduced to reconstruct the classical admittance model in this control scheme, which can more accurately describe the complex physical relationship between position and force in the interaction process of the robot–environment. In this control scheme, the pre-PID controller and fuzzy controller are adopted to improve the system force tracking performance in highly dynamic unknown environments, and the fuzzy controller is used to improve the trajectory, transient and steady-state response by adjusting the pre-PID integration gain online. Furthermore, the stability and robustness of this control algorithm are theoretically and experimentally demonstrated.

Findings

The excellent force tracking performance of the proposed control algorithm is verified by constructing highly dynamic unstructured environments through simulations and experiments. In simulations and experiments, the proposed control algorithm shows satisfactory force tracking performance with the advantages of fast response speed, little overshoot and strong robustness.

Practical implications

The control scheme is practical and simple in the actual industrial and medical scenarios, which requires accurate force control by the robot.

Originality/value

A new fractional-order admittance controller is proposed and verified by experiments in this research, which achieves excellent force tracking performance in dynamic unknown environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 July 2015

Mohammad Tabatabaei

– The purpose of this paper is to present a two-loop approach for velocity control of a permanent magnet synchronous motor (PMSM) under mechanical uncertainties.

Abstract

Purpose

The purpose of this paper is to present a two-loop approach for velocity control of a permanent magnet synchronous motor (PMSM) under mechanical uncertainties.

Design/methodology/approach

The inner loop calculates the two-axis stator reference voltages through a feedback linearization method. The outer loop employs an RST control structure to compute the q-axis stator reference current. To increase the robustness of the proposed method, the RST controller parameters are adapted through a fractional order model reference adaptive system (FO-MRAS). The fractional order gradient and Lyapunov methods are utilized as adaptation mechanisms.

Findings

The effect of the fractional order derivative in the load disturbance rejection, transient response speed and the robustness is verified through computer simulations. The simulation results show the effectiveness of the proposed method against the external torque and mechanical parameters uncertainties.

Originality/value

The proposed FO-MRAS based on Lyapunov adaptation mechanism is proposed for the first time. Moreover, application of the FO-MRAS for velocity control of PMSM is presented for the first time.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 June 2018

Hamed Tirandaz and Ali Karami-Mollaee

The purpose of this paper is to propose a novel and secure image transmission based on the unpredictable behavior of the chaotic systems.

Abstract

Purpose

The purpose of this paper is to propose a novel and secure image transmission based on the unpredictable behavior of the chaotic systems.

Design/methodology/approach

The proposed approach includes two main contributions: synchronization scheme and transmission scheme. The synchronization scheme benefits the advantage of the fractional-order active synchronization method. A new control law is derived to asymptotically synchronize the underlined fractional-order Bloch chaotic system. The validity of the proposed synchronization scheme is proved by the Lyapunov stability theorem. Then, a novel image transmission scheme is designed to transfer image data via chaotic signals, which modulates the encrypted data in the sender signals and demodulates it at the receiver side.

Findings

Numerical simulations are provided to show the validity and effectiveness of the proposed image transmission system. Furthermore, the performance of the image transmission system is evaluated using some illustrative examples and their corresponding statistical tests. The results demonstrate the effectiveness of the proposed method in comparison with other proposed methods in this subject.

Originality/value

A new chaos-based image transmission system is developed based on the synchronization of Bloch chaotic system. The introduced transmission system is interesting and could be applicable to any kind of secure image/video transmission.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 11 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 18 October 2021

Zafer Bingul and Oguzhan Karahan

The purpose of this paper is to address a fractional order fuzzy PID (FOFPID) control approach for solving the problem of enhancing high precision tracking performance and…

Abstract

Purpose

The purpose of this paper is to address a fractional order fuzzy PID (FOFPID) control approach for solving the problem of enhancing high precision tracking performance and robustness against to different reference trajectories of a 6-DOF Stewart Platform (SP) in joint space.

Design/methodology/approach

For the optimal design of the proposed control approach, tuning of the controller parameters including membership functions and input-output scaling factors along with the fractional order rate of error and fractional order integral of control signal is tuned with off-line by using particle swarm optimization (PSO) algorithm. For achieving this off-line optimization in the simulation environment, very accurate dynamic model of SP which has more complicated dynamical characteristics is required. Therefore, the coupling dynamic model of multi-rigid-body system is developed by Lagrange-Euler approach. For completeness, the mathematical model of the actuators is established and integrated with the dynamic model of SP mechanical system to state electromechanical coupling dynamic model. To study the validness of the proposed FOFPID controller, using this accurate dynamic model of the SP, other published control approaches such as the PID control, FOPID control and fuzzy PID control are also optimized with PSO in simulation environment. To compare trajectory tracking performance and effectiveness of the tuned controllers, the real time validation trajectory tracking experiments are conducted using the experimental setup of the SP by applying the optimum parameters of the controllers. The credibility of the results obtained with the controllers tuned in simulation environment is examined using statistical analysis.

Findings

The experimental results clearly demonstrate that the proposed optimal FOFPID controller can improve the control performance and reduce reference trajectory tracking errors of the SP. Also, the proposed PSO optimized FOFPID control strategy outperforms other control schemes in terms of the different difficulty levels of the given trajectories.

Originality/value

To the best of the authors’ knowledge, such a motion controller incorporating the fractional order approach to the fuzzy is first time applied in trajectory tracking control of SP.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 June 2021

N. Kanagaraj and Vishwa Nath Jha

This paper aims to design a modified fractional order proportional integral derivative (PID) (FO[PI]λDµ) controller based on the principle of fractional calculus and investigate…

Abstract

Purpose

This paper aims to design a modified fractional order proportional integral derivative (PID) (FO[PI]λDµ) controller based on the principle of fractional calculus and investigate its performance for a class of a second-order plant model under different operating conditions. The effectiveness of the proposed controller is compared with the classical controllers.

Design/methodology/approach

The fractional factor related to the integral term of the standard FO[PI]λDµ controller is applied as a common fractional factor term for the proportional plus integral coefficients in the proposed controller structure. The controller design is developed using the regular closed-loop system design specifications such as gain crossover frequency, phase margin, robustness to gain change and two more specifications, namely, noise reduction and disturbance elimination functions.

Findings

The study results of the designed controller using matrix laboratory software are analyzed and compared with an integer order PID and a classical FOPIλDµ controller, the proposed FO[PI]λDµ controller exhibit a high degree of performance in terms of settling time, fast response and no overshoot.

Originality/value

This paper proposes a methodology for the FO[PI]λDµ controller design for a second-order plant model using the closed-loop system design specifications. The effectiveness of the proposed control scheme is demonstrated under different operating conditions such as external load disturbances and input parameter change.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 April 2021

Thomas George and V. Ganesan

The purpose of this manuscript, a state feedback gain depends on the optimal design of fractional order PID controller to time-delay system is established. In established optimal…

Abstract

Purpose

The purpose of this manuscript, a state feedback gain depends on the optimal design of fractional order PID controller to time-delay system is established. In established optimal design known as advanced cuttlefish optimizer and random decision forest that is combined performance of random decision forest algorithm (RDFA) and advanced cuttlefish optimizer (ACFO).

Design/methodology/approach

The proposed ACFO uses the concept of crossover and mutation operator depend on position upgrading to enhance its search behavior, calculational speed as well as convergence profile at basic cuttlefish optimizer.

Findings

Fractional order proportional-integrator-derivative (FOPID) controller, apart from as tuning parameters (kp, ki and kd) it consists of two extra tuning parameters λ and µ. In established technology, the increase of FOPID controller is adjusted to reach needed responses that demonstrated using RDFA theory as well as RDF weight matrices is probable to the help of the ACFO method. The uniqueness of the established method is to decrease the failure of the FOPID controller at greater order time delay method with the help of controller maximize restrictions. The objective of the established method is selected to consider parameters set point as well as achieved parameters of time-delay system.

Originality/value

In the established technique used to evade large order delays as well as reliability restrictions such as small excesses, time resolution, as well as fixed condition defect. These methods is implemented at MATLAB/Simulink platform as well as outcomes compared to various existing methods such as Ziegler-Nichols fit, curve fit, Wang method, regression and invasive weed optimization and linear-quadratic regression method.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 14 February 2022

Erdem Ilten

In recent years, use of sensorless control methods for electrical motor-based variable speed drive systems has been increasing rapidly to compensate the increasing costs in…

Abstract

Purpose

In recent years, use of sensorless control methods for electrical motor-based variable speed drive systems has been increasing rapidly to compensate the increasing costs in industrial systems. Also, use of induction motors is popular for a long time to decrease the cost of these industrial systems. This study aims to design an effective controller to improve the sensorless speed control performance of induction motor. To achieve this, a conformable fractional order proportional integral (CFOPI) controller is designed.

Design/methodology/approach

The system is modeled based on small signal analysis by using the input–output data, experimentally. To do this, system identification toolbox of Matlab is used. The proposed controller is established on conformable fractional integral approach proposed by Khalil et al. (2014). CFOPI controller coefficients are optimized using particle swarm optimization method on the created small signal-based simulation model of the system to minimize the integral time absolute error. To prove the success of the proposed method, a traditional fractional order proportional integral (TFOPI) controller is tested under the same experimental system with the CFOPI controller.

Findings

TFOPI and CFOPI controllers are tested with the optimum parameters. Reference and actual speed trends are obtained for both methods. In induction motor start-up test, settling-times are measured as 8.73 and 8.44 s and steady-state oscillations are 2.66% and 0% (almost) for TFOPI and CFOPI controllers, respectively. In variable referenced speed tracking test, CFOPI performs well at all speed levels, while TFOPI fails to reach the reference speed at most speed levels.

Practical implications

Proposed CFOPI control method can be easily implemented in industrial systems, thanks to its simple algorithm. digital signal peripheral interface controller (dsPIC) based driver circuit with designed CFOPI controller used in this study can be applied directly to industrial systems such as elevators, conveyors, cranes and drills. Moreover, it can improve the performance of induction motor-based variable speed drive systems.

Originality/value

The proposed method provides robust performance for induction motor used in control systems. Additionally, it does this by using less complex algorithm written on the processors according to the traditional fractional order controllers.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 June 2012

Cem Onat, Melin Şahin and Yavuz Yaman

The purpose of this paper is to detail the design of a fractional controller which was developed for the suppression of the flexural vibrations of the first mode of a smart beam.

Abstract

Purpose

The purpose of this paper is to detail the design of a fractional controller which was developed for the suppression of the flexural vibrations of the first mode of a smart beam.

Design/methodology/approach

During the design of the fractional controller, in addition to the classical control parameters such as the controller gain and the bandwidth; the order of the derivative effect was also included as another design parameter. The controller was then designed by considering the closed loop frequency responses of different fractional orders of Continued Fraction Expansion (CFE) method.

Findings

The first, second, third and fourth order approximations of CFE method were studied for the performance analysis of the controller. It was determined that the increase in the order resulted in better vibration level suppression at the resonance. The robustness analysis of the developed controllers was also conducted.

Practical implications

The experimentally obtained free and forced vibration results indicated that the increase in the order of the approximations yielded better performance around the first flexural resonance region of the smart beam and proved to yield better performance than the classical integer order controllers.

Originality/value

Evaluation of the performance of a developed fractional controller was realized by using different approach orders of the CFE method for the suppression of the flexural vibrations of a smart beam.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 10 February 2023

Junting Lin, Mingjun Ni and Huadian Liang

This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under…

Abstract

Purpose

This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block system, so as to improve the tracking efficiency and collision avoidance performance.

Design/methodology/approach

The mathematical model of information interaction between trains is established based on algebraic graph theory, so that the train can obtain the state information of adjacent trains, and then realize the distributed cooperative control of each train. In the controller design, the sliding mode control and fractional calculus are combined to avoid the discontinuous switching phenomenon, so as to suppress the chattering of sliding mode control, and a parameter adaptive law is constructed to approximate the time-varying operating resistance coefficient.

Findings

The simulation results show that compared with proportional integral derivative (PID) control and ordinary sliding mode control, the control accuracy of the proposed algorithm in terms of speed is, respectively, improved by 25% and 75%. The error frequency and fluctuation range of the proposed algorithm are reduced in the position error control, the error value tends to 0, and the operation trend tends to be consistent. Therefore, the control method can improve the control accuracy of the system and prove that it has strong immunity.

Originality/value

The algorithm can reduce the influence of external interference in the actual operating environment, realize efficient and stable tracking of trains, and ensure the safety of train control.

Details

Railway Sciences, vol. 2 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 17 August 2021

Hasan Saribas and Sinem Kahvecioglu

This study aims to compare the performance of the conventional and fractional order proportional-integral-derivative (PID and FOPID) controllers tuned with a particle swarm…

264

Abstract

Purpose

This study aims to compare the performance of the conventional and fractional order proportional-integral-derivative (PID and FOPID) controllers tuned with a particle swarm optimization (PSO) and genetic algorithm (GA) for quadrotor control.

Design/methodology/approach

In this study, the gains of the controllers were tuned using PSO and GA, which are included in the heuristic optimization methods. The tuning processes of the controller’s gains were formulated as optimization problems. While generating the objective functions (cost functions), four different decision criteria were considered separately: integrated summation error (ISE), integrated absolute error, integrated time absolute error and integrated time summation error (ITSE).

Findings

According to the simulation results and comparison tables that were created, FOPID controllers tuned with PSO performed better performances than PID controllers. In addition, the ITSE criterion returned better results in control of all axes except for altitude control when compared to the other cost functions. In the control of altitude with the PID controller, the ISE criterion showed better performance.

Originality/value

While a conventional PID controller has three parameters (Kp, Ki, Kd) that need to be tuned, FOPID controllers have two additional parameters (µ). The inclusion of these two extra parameters means more flexibility in the controller design but much more complexity for parameter tuning. This study reveals the potential and effectiveness of PSO and GA in tuning the controller despite the increased number of parameters and complexity.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 2000