Search results

1 – 10 of 220
Article
Publication date: 15 September 2021

Xu Zou, Zhenbao Liu, HongGang Gao and Wen Zhao

This study aims to deal with the problem of trajectory tracking control for the quadrotor under external environmental disturbance and variable payloads.

Abstract

Purpose

This study aims to deal with the problem of trajectory tracking control for the quadrotor under external environmental disturbance and variable payloads.

Design/methodology/approach

In the field of unmanned aerial vehicle (UAV) control, external environmental disturbance and internal variable payloads as two major interference factors lead to control performance degradation or even instability, thus a trajectory tracking controller which innovatively combines sliding mode control technology and model-free control technique is proposed. The proposed controller is constructed with a learning rate-based sliding mode controller and an ultra-local model. Based on the proposed controller, the nonlinear system model of variable load quadrotor is locally estimated and the system’s uncertainties and disturbances can be compensated.

Findings

The simulation and actual test results demonstrate the satisfactory control performance and the robustness of the proposed controller compared with the PID and Backstepping controller under external environmental disturbance and variable payloads. Moreover, the proposed controller solves the trajectory tracking control problem not only when payloads change at the center of gravity but also when the position of load variation deviates from the center of gravity.

Practical implications

In both military and civilian domains, the quadrotor may encounter such situations that the payloads change, such as transporting goods, aerial refueling and so on. As a large internal interference factor, variable load tends to lead to unstable control. The research results provide theoretical guidance and technical support for trajectory tracking control of quadrotor under variable payloads.

Originality/value

The proposed controller combines learning rate-based sliding mode controller and model-free control technique to achieve a more efficient and accurate trajectory control of the quadrotor when considering system uncertainties and the load variation that happens in the unknown location.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 July 2018

Shuai An, Suozhong Yuan and Huadong Li

The purpose of this paper is to enhance the quadrotor’s capability of short-distance delivery to satisfy the large demand for quadrotor, which is used for goods distribution in…

Abstract

Purpose

The purpose of this paper is to enhance the quadrotor’s capability of short-distance delivery to satisfy the large demand for quadrotor, which is used for goods distribution in huge warehouses, under time-varying payload and external wind disturbance.

Design/methodology/approach

A trajectory tracking controller design based on the combination of an adaptive sliding mode control (ASMC) method and the active disturbance rejection control (ADRC) technique is proposed. Besides, an inner–outer loop control system structure is adopted.

Findings

Simulation results of different trajectory tracking verify the effectiveness and robustness of the proposed tracking control method under various conditions, including parameter uncertainty and external wind disturbance. The proposed control strategy ensures that quadrotor UAV is capable of tracking linear and spiral trajectory well whether it loads or unloads goods in the presence of the external wind disturbance.

Originality/value

The proposed method of designing a trajectory tracking controller is based on an integral ADRC and ASMC scheme so as to deal with the trajectory tracking problem for a quadrotor with payload variation.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 11 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 3 November 2020

Taki Eddine Lechekhab, Stojadin Manojlovic, Momir Stankovic, Rafal Madonski and Slobodan Simic

The control of a quadrotor unmanned aerial vehicle (UAV) is a challenging problem because of its highly nonlinear dynamics, under-actuated nature and strong cross-couplings. To…

Abstract

Purpose

The control of a quadrotor unmanned aerial vehicle (UAV) is a challenging problem because of its highly nonlinear dynamics, under-actuated nature and strong cross-couplings. To solve this problem, this paper aims to propose a robust control strategy, based on a concept of active disturbance rejection control (ADRC).

Design/methodology/approach

The altitude/attitude dynamics of a quadrotor is reformulated into the ADRC framework. Three distinct variations of the error-based ADRC algorithms, with different structures of generalized extended state observers (GESO), are derived for the altitude/attitude trajectory-following task. The convergence of the observation part is proved based on the singular perturbation theory. Through a frequency analysis and a quantitative comparison in a simulated environment, each design is shown to have certain advantages and disadvantages in terms of tracking accuracy and robustness. The digital prototypes of the proposed controllers for quadrotor altitude and attitude control channels are designed and validated through real-time hardware-in-the-loop (HIL) co-simulation, with field-programmable gate array (FPGA) hardware.

Findings

The effects of unavailable reference time-derivatives can be estimated by the ESO and rejected through the outer control loop. The higher order ESOs demonstrate better performances, but with reductions of stability margins. Time-domain simulation analysis reveals the benefits of the proposed control structure related to classical control approach. Real-time FPGA-based HIL co-simulations validated the performances of the considered digital controllers in typical quadrotor flight scenarios.

Practical implications

The conducted study forms a set of practical guidelines for end-users for selecting specific ADRC design for quadrotor control depending on the given control objective and work conditions. Furthermore, the paper presents detailed procedure for the design, simulation and validation of the embedded FPGA-based quadrotor control unit.

Originality/value

In light of the currently available literature on error-based ADRC, a comprehensive approach is applied here, which includes the design of error-based ADRC with different GESOs, its frequency-domain and time-domain analyses using different simulation of UAV flight scenarios, as well as its FPGA-based implementation and testing on the real hardware.

Article
Publication date: 7 September 2015

Mohd Ariffanan Mohd Basri, Abdul Rashid Husain and Kumeresan A. Danapalasingam

The purpose of this paper is to propose a new approach for robust control of an autonomous quadrotor unmanned aerial vehicle (UAV) in automatic take-off, hovering and landing…

Abstract

Purpose

The purpose of this paper is to propose a new approach for robust control of an autonomous quadrotor unmanned aerial vehicle (UAV) in automatic take-off, hovering and landing mission and also to improve the stabilizing performance of the quadrotor with inherent time-varying disturbance.

Design/methodology/approach

First, the dynamic model of the aerial vehicle is mathematically formulated. Then, a combination of a nonlinear backstepping scheme with the intelligent fuzzy system as a new key idea to generate a robust controller is designed for the stabilization and altitude tracking of the vehicle. For the problem of determining the backstepping control parameters, a new heuristic algorithm, namely, Gravitational Search Algorithm has been used.

Findings

The control law design utilizes the backstepping control methodology that uses Lyapunov function which can guarantee the stability of the nominal model system, whereas the intelligent system is used as a compensator to attenuate the effects caused by external disturbances. Simulation results demonstrate that the proposed control scheme can achieve favorable control performances for automatic take-off, hovering and landing mission of quadrotor UAV even in the presence of unknown perturbations.

Originality/value

This paper propose a new robust control design approach which incorporates the backstepping control with fuzzy system for quadrotor UAV with inherent time-varying disturbance. The originality of this work relies on the technique to compensate the disturbances acting on the quadrotor UAV. In this new approach, the fuzzy system is introduced as an auxiliary control effort to compensate the effect of disturbances. Because the proposed control technique has the capability of robustness against disturbance, thus, it is also suitable to be applied for a broad class of uncertain nonlinear systems.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 13 September 2019

JeongHwan Kim, Steven Aurecianus, Seonglok Nam, Jungkeun Park and Taesam Kang

The purpose of this paper is to introduce a low-cost quadrotor that can be used for educational purposes and investigate the applicability of a low-cost MEMS laser sensor for…

Abstract

Purpose

The purpose of this paper is to introduce a low-cost quadrotor that can be used for educational purposes and investigate the applicability of a low-cost MEMS laser sensor for accurate altitude control.

Design/methodology/approach

A single printed circuit board is designed to form the structure of the quadrotor. A low-cost MEMS motion sensor, a microcontroller and four small motors are mounted on the board. A separate laser sensor module measures the altitude. A remote controller is designed to control the quadrotor’s motion. The remote controller communicates with the quadrotor via wireless connection. Roll and pitch attitude stabilization is achieved using the proportional and derivative control algorithm. The applicability of an MEMS laser sensor for altitude control is also studied.

Findings

The low-cost quadrotor works well even though its body structure is made using a printed circuit board. Low pass and Kalman filters work well for attitude estimation and control application. The laser sensor is very accurate and good for altitude feedback; however, it has a relatively short measurement range and its sampling rate is relatively slow, which limits its applications. The vertical velocity obtained by differentiating the laser altitude has delay and inhibits suitable damping. Using the vertical velocity obtained by integrating the vertical accelerometer’s output, the damping performance is improved.

Originality/value

Developing a low-cost quadrotor that can be used for educational purposes and successfully implementing altitude control using a laser sensor and accelerometer.

Details

International Journal of Intelligent Unmanned Systems, vol. 8 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 28 July 2022

Maryam Mosalsal and Mahdi Khodabandeh

This paper aims to describe the characteristics and modeling of the variable pitch quadrotor. In a variable pitch quadrotor, unlike ordinary quadrotors that the force is generated…

Abstract

Purpose

This paper aims to describe the characteristics and modeling of the variable pitch quadrotor. In a variable pitch quadrotor, unlike ordinary quadrotors that the force is generated by the rotors, the speed of the rotors is constant, and the force is generated by varying the pitch angle of blades.

Design/methodology/approach

In this paper, a sliding mode controller and an adaptive sliding mode controller are used to control the variable pitch quadrotor to have better performance.

Findings

The variable pitch mechanism has a wider control bandwidth, and it is able to produce a negative thrust that facilitates trajectory tracking and aggressive maneuvers. The simulation results indicate high performance of the proposed control scheme in presence of disturbance and changes in mass of the quadrotor.

Originality/value

The performance of the controllers for the variable pitch quadrotor is investigated through computer simulation with MATLAB software.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 November 2021

Muharrem Selim Can and Hamdi Ercan

This study aims to develop a quadrotor with a robust control system against weight variations. A Proportional-Integral-Derivative (PID) controller based on Particle Swarm…

Abstract

Purpose

This study aims to develop a quadrotor with a robust control system against weight variations. A Proportional-Integral-Derivative (PID) controller based on Particle Swarm Optimization and Differential Evaluation to tune the parameters of PID has been implemented with real-time simulations of the quadrotor.

Design/methodology/approach

The optimization algorithms are combined with the PID control mechanism of the quadrotor to increase the performance of the trajectory tracking for a quadrotor. The dynamical model of the quadrotor is derived by using Newton-Euler equations.

Findings

In this study, the most efficient control parameters of the quadrotor are selected using evolutionary optimization algorithms in real-time simulations. The control parameters of PID directly affect the controller’s performance that position error and stability improved by tuning the parameters. Therefore, the optimization algorithms can be used to improve the trajectory tracking performance of the quadrotor.

Practical implications

The online optimization result showed that evolutionary algorithms improve the performance of the trajectory tracking of the quadrotor.

Originality/value

This study states the design of an optimized controller compared with manually tuned controller methods. Fitness functions are defined as a custom fitness function (overshoot, rise-time, settling-time and steady-state error), mean-square-error, root-mean-square-error and sum-square-error. In addition, all the simulations are performed based on a realistic simulation environment. Furthermore, the optimization process of the parameters is implemented in real-time that the proposed controller searches better parameters with real-time simulations and finds the optimal parameter online.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 January 2021

Azam Hokmabadi and Mahdi Khodabandeh

The purpose of this paper is to design a controller for a quadrotor only by using input–output data without a need for the system model.

177

Abstract

Purpose

The purpose of this paper is to design a controller for a quadrotor only by using input–output data without a need for the system model.

Design/methodology/approach

Tracking control for the quadrotor is considered by using unfalsified control, which is one of the most recent strategies of robust adaptive control. The main assumption in unfalsified control design is that there is no access to the system model. Also, ideal path tracking and controlling the quadrotor are been paid attention to in the presence of external disturbances and uncertainties. First, unfalsified control method is introduced which is a data-driven and model-free approach in the field of adaptive control. Next, model of the quadrotor and unfalsified control design for the quadrotor are presented. Second, design of a control bank consisting of four proportional integral derivative controllers and a sliding mode controller is carried out.

Findings

A particular innovation on an unfalsified control algorithm in this paper is use of a generalized cost function in the hysteresis switching algorithm to find the best controller.

Originality/value

Finally, the performance and robustness of the designed controllers are investigated by simulation studies in various operating conditions including reference trajectory changes, facing to wind disturbance, uncertainty of the system and changes in payload, which show acceptable performances.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 May 2017

Ahmet Ermeydan and Emre Kiyak

The purpose of this paper is to present fault tolerant control of a quadrotor based on the enhanced proportional integral derivative (PID) structure in the presence of one or more…

Abstract

Purpose

The purpose of this paper is to present fault tolerant control of a quadrotor based on the enhanced proportional integral derivative (PID) structure in the presence of one or more actuator faults.

Design/methodology/approach

Mathematical model of the quadrotor is derived by parameter identification of the system for the simulation of the UAV dynamics and flight control in MATLAB/Simulink. An improved PID structure is used to provide the stability of the nonlinear quadcopter system both for attitude and path control of the system. The results of the healty system and the faulty system are given in simulations, together with motor dynamics.

Findings

In this study, actuator faults are considered to show that a robust controller design handles the loss of effectiveness in motors up to some extent. For the loss of control effectiveness of 20 per cent in first and third motors, psi state follows the reference with steady state error, and it does not go unstable. Motor 1 and Motor 3 respond to given motor fault quickly. When it comes to one actuator fault, steady state errors remain in some states, but the system does not become unstable.

Originality/value

In this paper, an enhanced PID controller is proposed to keep the quadrotor stable in case of actuator faults. Proposed method demonstrates the effectiveness of the control system against motor faults.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 April 2016

Deepak B B V L and Pritpal Singh

In the previous decade, unmanned aerial vehicles (UAVs) have turned into a subject of enthusiasm for some exploration associations. UAVs are discovering applications in different…

1891

Abstract

Purpose

In the previous decade, unmanned aerial vehicles (UAVs) have turned into a subject of enthusiasm for some exploration associations. UAVs are discovering applications in different regions going from military applications to activity reconnaissance. The purpose of this paper is to overview a particular sort of UAV called quadrotor or quadcopter.

Design/methodology/approach

This paper includes the dynamic models of a quadrotor and the distinctive model-reliant and model-autonomous control systems and their correlation.

Findings

In the present time, focus has moved to outlining autonomous quadrotors. Ultimately, the paper examines the potential applications of quadrotors and their part in multi-operators frameworks.

Originality/value

This investigation deals with the review on various quadrotors, their applications and motion control strategies.

Details

International Journal of Intelligent Unmanned Systems, vol. 4 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

1 – 10 of 220