Search results

1 – 10 of 958
Article
Publication date: 1 February 2023

Kaixin Li, Ye He, Kuan Li and Chengguo Liu

With the increasing demands of industrial applications, it is imperative for robots to accomplish good contact-interaction with dynamic environments. Hence, the purpose of this…

Abstract

Purpose

With the increasing demands of industrial applications, it is imperative for robots to accomplish good contact-interaction with dynamic environments. Hence, the purpose of this research is to propose an adaptive fractional-order admittance control scheme to realize a robot–environment contact with high accuracy, small overshoot and fast response.

Design/methodology/approach

Fractional calculus is introduced to reconstruct the classical admittance model in this control scheme, which can more accurately describe the complex physical relationship between position and force in the interaction process of the robot–environment. In this control scheme, the pre-PID controller and fuzzy controller are adopted to improve the system force tracking performance in highly dynamic unknown environments, and the fuzzy controller is used to improve the trajectory, transient and steady-state response by adjusting the pre-PID integration gain online. Furthermore, the stability and robustness of this control algorithm are theoretically and experimentally demonstrated.

Findings

The excellent force tracking performance of the proposed control algorithm is verified by constructing highly dynamic unstructured environments through simulations and experiments. In simulations and experiments, the proposed control algorithm shows satisfactory force tracking performance with the advantages of fast response speed, little overshoot and strong robustness.

Practical implications

The control scheme is practical and simple in the actual industrial and medical scenarios, which requires accurate force control by the robot.

Originality/value

A new fractional-order admittance controller is proposed and verified by experiments in this research, which achieves excellent force tracking performance in dynamic unknown environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 May 2020

Binrui Wang, Jiqing Huang, Guoyang Shen and Dijian Chen

Active compliance control is the key technology for Tri-Co robots (coexisting–cooperative–cognitive robots) to interact with the environment and people. This study aims to make…

Abstract

Purpose

Active compliance control is the key technology for Tri-Co robots (coexisting–cooperative–cognitive robots) to interact with the environment and people. This study aims to make the robot arm shake hands compliantly with people; the paper proposed two closed-loop-compliant control schemes for the dynamic identification of cascade elbow joint.

Design/methodology/approach

The active compliance control strategy consists of inner and outer loops. The inner loop is the position control using sliding mode control with disturbance observer (SMCDO), in which a new saturation function is designed to replace the traditional signal function of sliding mode control (SMC) law so as to mitigate chatter. The outer loop is the admittance control to regulate the dynamic behaviours of the elbow joint, i.e. its impedance. The simulation is carried out to verify the performance of the proposed control scheme.

Findings

The results show that the chatter of traditional SMC can be effectively eliminated by using SMCDO with this saturation function. In addition, for the handshake task, the value of threshold force and elbow joint compliance is defined. Then, the threshold force tests, impact tests and elbow-joint compliance tests are carried out. The results show that, in the impedance model, the elbow joint compliance only depends on the stiffness parameters, not on the position control loop.

Practical implications

The effectiveness of the admittance control based on SMCDO can improve the adaptability of industrial manipulator in different working environments to some degree.

Originality/value

The admittance control with SMCDO completed trajectory tracking has higher accuracy than that based on SMC.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 May 2020

Feifei Bian, Danmei Ren, Ruifeng Li, Peidong Liang, Ke Wang and Lijun Zhao

The purpose of this paper is to enable robots to intelligently adapt their damping characteristics and motions in a reactive fashion toward human inputs and task requirements…

Abstract

Purpose

The purpose of this paper is to enable robots to intelligently adapt their damping characteristics and motions in a reactive fashion toward human inputs and task requirements during physical human–robot interaction.

Design/methodology/approach

This paper exploits a combination of the dynamical system and the admittance model to create robot behaviors. The reference trajectories are generated by dynamical systems while the admittance control enables robots to compliantly follow the reference trajectories. To determine how control is divided between the two models, a collaborative arbitration algorithm is presented to change their contributions to the robot motion based on the contact forces. In addition, the authors investigate to model the robot’s impedance characteristics as a function of the task requirements and build a novel artificial damping field (ADF) to represent the virtual damping at arbitrary robot states.

Findings

The authors evaluate their methods through experiments on an UR10 robot. The result shows promising performances for the robot to achieve complex tasks in collaboration with human partners.

Originality/value

The proposed method extends the dynamical system approach with an admittance control law to allow a robot motion being adjusted in real time. Besides, the authors propose a novel ADF method to model the robot’s impedance characteristics as a function of the task requirements.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 30 September 2022

Ye Shen, Bo Li, Wei Tian, Jinjun Duan and Mingxuan Liu

With the increasing requirements for intelligence in the field of aviation manufacturing, manual assembly can hardly adapt to the trend of future production. The purpose of this…

Abstract

Purpose

With the increasing requirements for intelligence in the field of aviation manufacturing, manual assembly can hardly adapt to the trend of future production. The purpose of this study is to realize the semi-automatic assembly of the movable airfoil by proposing a human-robot collaborative assembly strategy based on adaptive admittance control.

Design/methodology/approach

A logical judgment system for operating intentions is introduced in terms of different situations of the movements; hence, a human cognition-based adaptive admittance control method is developed to curb the damage of inertia; then virtual limit walls are raised on the periphery of the control model to ensure safety; finally, simulated and experimental comparisons with other admittance control methods are conducted to validate the proposed method.

Findings

The proposed method can save at least 28.8% of the time in the stopping phase which effectively compensates for inertia during the assembly process and has high robustness concerning data disturbances.

Originality/value

Due to the human-robot collaboration to achieve compliant assembly of movable airfoils can preserve human subjectivity while overcoming the physical limits of humans, which is of great significance to the investigation of intelligent aircraft assembly, the proposed method that reflects the user's naturalness and intuitiveness can not only enhance the stability and the flexibility of the manipulation, but also contribute to applications of industrial robots in the field of human-robot collaboration.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 21 October 2020

Le Fu and Jie Zhao

Admittance control is a typical complaint control methodology. Traditionally, admittance control systems are based on a dynamical relationship described by Voigt model. By…

Abstract

Purpose

Admittance control is a typical complaint control methodology. Traditionally, admittance control systems are based on a dynamical relationship described by Voigt model. By contrast, after changing connection of spring and damper, Maxwell model produces different dynamics and has shown better impact absorption performance. This paper aims to design a novel compliant control method based on Maxwell model and implement it in a robot catching scenario.

Design/methodology/approach

To achieve this goal, this paper proposed a Maxwell model based admittance control scheme. Considering several motion stages involved in one catching attempt, the following approaches are adopted. First, Kalman filter is used to process the position data stream acquired from motion capture system and predict the subsequent object flying trajectory. Then, a linear segments with parabolic blends reaching motion is generated to achieve time-optimal movement under kinematic and joint inherent constraints. After robot reached the desired catching point, the proposed Maxwell model based admittance controller performs such as a cushion to moderate the impact between robot end-effector and flying object.

Findings

This paper has experimentally demonstrated the feasibility and effectiveness of the proposed method. Compared with typical Voigt model based compliant catching, less object bounding away from end-effector happens and the success rate of catching has been improved.

Originality/value

The authors proposed a novel Maxwell model based admittance control method and demonstrated its effectiveness in a robot catching scenario. The author’s approach may inspire other related researchers and has great potential of practical usage in a widespread of robot applications.

Details

Assembly Automation, vol. 41 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 17 March 2022

Chengguo Liu, Ye He, Xiaoan Chen and Hongli Cao

As more and more robots are used in industry, it is necessary for robots to interact with high dynamic environments. For this reason, the purpose of this research is to form an…

Abstract

Purpose

As more and more robots are used in industry, it is necessary for robots to interact with high dynamic environments. For this reason, the purpose of this research is to form an excellent force controller by considering the transient contact force response, overshoot and steady-state force-tracking accuracy.

Design/methodology/approach

Combining the active disturbance rejection control (ADRC) and the adaptive fuzzy PD controller, an enhanced admittance force-tracking controller framework and a well-designed control scheme are proposed. Tracking differentiator balances the contradiction between inertia and jump control signal of the control object. Kalman filter and extended state observer are introduced to obtain purer feedback force signal and uncertainty compensation. Adaptive fuzzy PD controller is introduced to account for transient and steady state performance of the system.

Findings

The proposed controller has achieved successful results through simulation and actual test of 6-axis robot with minimum error.

Practical implications

The controller is simple and practical in real industrial scenarios, where force control by robots is required.

Originality/value

In this research, a new practical force control algorithm is proposed to guarantee the performance of the force controller for robots interacting with high dynamic environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 August 2023

Dongmin Li, Shiming Zhu, Shangfei Xia, Peisi Zhong, Jiaqi Fang and Peng Dai

During drilling in coal mines, sticking of drill rod (referred to as SDR in this work) is a potential threat to underground safety. However, no practical measures to deter SDR…

Abstract

Purpose

During drilling in coal mines, sticking of drill rod (referred to as SDR in this work) is a potential threat to underground safety. However, no practical measures to deter SDR have been developed yet. The purpose of this study is to develop an anti-SDR strategy using proportional-integral-derivative (PID) and compliance control (PIDC). The proposed strategy is compatible with the drilling process currently used in underground coal mines using drill rigs. Therefore, this study aims to contribute to the PIDC strategy for solving SDR.

Design/methodology/approach

A hydraulic circuit to reduce SDR was built based on a load-independent flow distribution system, a PID controller was designed to control the inlet hydraulic pressure of the rotation motor and a typical compliance control approach was adopted to control the feed force and displacement. Moreover, the weight and optimal combination of the alternative admittance control parameters for the feed cylinder were obtained by adopting the orthogonal experiment approach. Furthermore, a fuzzy admittance control approach was proposed to control the feed displacement. Experiments were conducted to test the effectiveness of the proposed method.

Findings

The experimental results indicated that the PIDC strategy was appropriate and effective for controlling the rotation motor and feed cylinder; thus, the proposed method significantly reduces the SDR during drilling operations in underground coal mines.

Research limitations/implications

As the PIDC strategy solves the SDR problem in underground coal mines, it greatly improves the safety of coal mine operation and decreases the power cost. Consequently, it brings the considerable benefits of coal mine production and vast application prospects in other corresponding fields. Actual drilling conditions are difficult to accurately simulate in a laboratory; thus, for future work, drilling experiments can be conducted in actual underground coal mines.

Originality/value

The PIDC-based anti-SDR strategy proposed in this study satisfactorily controls the rotation motor and feed cylinder and facilitates the feed and rotation movements. Furthermore, the tangible novelty of this study results is that it improves the frequency response of the entire drilling system. The drilling process with PIDC decreased the occurrence of SDR by 50%; therefore, the anti-SDR strategy can significantly improve the safety and efficiency of underground coal mining.

Details

Robotic Intelligence and Automation, vol. 43 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 11 January 2024

Yuepeng Zhang, Guangzhong Cao, Linglong Li and Dongfeng Diao

The purpose of this paper is to design a new trajectory error compensation method to improve the trajectory tracking performance and compliance of the knee exoskeleton in…

Abstract

Purpose

The purpose of this paper is to design a new trajectory error compensation method to improve the trajectory tracking performance and compliance of the knee exoskeleton in human–exoskeleton interaction motion.

Design/methodology/approach

A trajectory error compensation method based on admittance-extended Kalman filter (AEKF) error fusion for human–exoskeleton interaction control. The admittance controller is used to calculate the trajectory error adjustment through the feedback human–exoskeleton interaction force, and the actual trajectory error is obtained through the encoder feedback of exoskeleton and the designed trajectory. By using the fusion and prediction characteristics of EKF, the calculated trajectory error adjustment and the actual error are fused to obtain a new trajectory error compensation, which is feedback to the knee exoskeleton controller. This method is designed to be capable of improving the trajectory tracking performance of the knee exoskeleton and enhancing the compliance of knee exoskeleton interaction.

Findings

Six volunteers conducted comparative experiments on four different motion frequencies. The experimental results show that this method can effectively improve the trajectory tracking performance and compliance of the knee exoskeleton in human–exoskeleton interaction.

Originality/value

The AEKF method first uses the data fusion idea to fuse the estimated error with measurement errors, obtaining more accurate trajectory error compensation for the knee exoskeleton motion control. This work provides great benefits for the trajectory tracking performance and compliance of lower limb exoskeletons in human–exoskeleton interaction movements.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 1 December 2003

R.Q. van der Linde and P. Lammertse

This paper describes the technical principles of a high‐performance force controlled robot, called the HapticMaster. It is designed as a generic platform for applications with…

1958

Abstract

This paper describes the technical principles of a high‐performance force controlled robot, called the HapticMaster. It is designed as a generic platform for applications with human interaction. Therefore, it differs significantly from most industrial robots on the one hand, whereas it also differs from most haptic interfaces on the other hand due to its power. An admittance control paradigm is used, which facilitates a high joint stiffness in combination with high force sensitivity. Typical applications for the HapticMaster are found in virtual reality, haptics research, and robot rehabilitation.

Details

Industrial Robot: An International Journal, vol. 30 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 June 2015

Haitao Yang, Zongwu Xie, Kui Sun, Xiaoyu Zhao, Minghe Jin and Cao Li

The purpose of this paper is to develop a set of ground experiment system to verify the basic functions of space effector and the capturing reliability of space end-effector for…

Abstract

Purpose

The purpose of this paper is to develop a set of ground experiment system to verify the basic functions of space effector and the capturing reliability of space end-effector for the free-floating target payload in the three-dimensional space. The development of ground experiment system for space end-effector is essential and significant, because it costs too much to launch a space robot or other spacecraft and carry out operation tasks in space. Owing to the negligible gravity in space, which is different from that in the ground environment, ground experiment system for space end-effector should have the capability of verifying the basic functions of space effector and the reliability of space end-effector in capturing the free-floating target payload in space.

Design/methodology/approach

The ground experiment system for space end-effector mainly adopts the hybrid simulation method, which includes the real hardware experiment and software simulation. To emulate the micro-gravity environment, the contact dynamics simulator is applied to emulating the motion state of the free-floating target payload, while the admittance control is used to realize the “soft” capturing of space end-effector to simulate the real situation in space.

Findings

With the gravity compensation, the influence of gravity is almost eliminated and the results meet the requirements of the experiment. In the ground experiment, the admittance control is effective and the actual motion state of space end-effector capturing the target in space can be simulated. The experiment results show that space end-effector can capture the free-floating target payload successfully and hopefully have the ability to capture a free-floating target in space.

Originality/value

The system can verify space end-effector capturing the free-floating target payload in three-dimensional space and imitate the motion of space end-effector capturing the free-floating target in space. The system can also be modified and improved for application in the verification of space robot capturing and docking the target, which is valuable for the ground verification of space applications.

Details

Industrial Robot: An International Journal, vol. 42 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 958