Search results

1 – 10 of over 94000
Article
Publication date: 13 June 2024

Chang Wang, Ran Jiao and Jianhua Zhang

Fully-actuated unmanned aerial vehicles (UAVs) are a growing and promising field of research, which shows advantages for aerial physical interaction. The purpose of this paper is…

Abstract

Purpose

Fully-actuated unmanned aerial vehicles (UAVs) are a growing and promising field of research, which shows advantages for aerial physical interaction. The purpose of this paper is to construct a force sensor-denied control method for a fully-actuated hexarotor to conduct aerial interaction with accurate force exerted outward.

Design/methodology/approach

First, by extending single-dimension impedance model to the fully-actuated UAV model, an impedance controller is designed for compliant UAV pose/force control. Then, to estimate the interaction force between UAV end-effector and external environment accurately, combined with super-twisting theory, a nonlinear force observer is constructed. Finally, based on impedance controller and estimated force from observer, an interaction force regulation method is proposed.

Findings

The presented nonlinear observer-based impedance control approach is validated in both simulation and environments, in which the authors try to use a fully-actuated hexarotor to accomplish the task of aerial physical interaction finding that a specified force is able to be exerted to environment without any information from force sensors.

Originality/value

A solution of aerial physical interaction for UAV system enabling accurate force exerted outward without any force sensors is proposed in this paper.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 August 2024

Yong Hu, Sui Wang, Lihang Feng, Baochang Liu, Yifang Xiang, Chunmiao Li and Dong Wang

The purpose of this study is to design a highly integrated smart glove to enable gesture acquisition and force sensory interactions, and to enhance the realism and immersion of…

Abstract

Purpose

The purpose of this study is to design a highly integrated smart glove to enable gesture acquisition and force sensory interactions, and to enhance the realism and immersion of virtual reality interaction experiences.

Design/methodology/approach

The smart glove is highly integrated with gesture sensing, force-haptic acquisition and virtual force feedback modules. Gesture sensing realizes the interactive display of hand posture. The force-haptic acquisition and virtual force feedback provide immersive force feedback to enhance the sense of presence and immersion of the virtual reality interaction.

Findings

The experimental results show that the average error of the finger bending sensor is only 0.176°, the error of the arm sensor is close to 0 and the maximum error of the force sensing is 2.08 g, which is able to accurately sense the hand posture and force-touch information. In the virtual reality interaction experiments, the force feedback has obvious level distinction, which can enhance the sense of presence and immersion during the interaction.

Originality/value

This paper innovatively proposes a highly integrated smart glove that cleverly integrates gesture acquisition, force-haptic acquisition and virtual force feedback. The glove enhances the sense of presence and immersion of virtual reality interaction through precise force feedback, which has great potential for application in virtual environment interaction in various fields.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 23 August 2024

Yali Guo, Hui Liu, Luyuan Gong and Shengqiang Shen

The purpose of this paper is to analyze the mechanism of nanofluid enhanced heat transfer in microchannels and promote the application of nanofluids in industrial processes such…

Abstract

Purpose

The purpose of this paper is to analyze the mechanism of nanofluid enhanced heat transfer in microchannels and promote the application of nanofluids in industrial processes such as solar collectors, electronic cooling and automotive batteries.

Design/methodology/approach

The two-phase lattice Boltzmann method was used to calculate the flow and heat transfer characteristics of Al2O3 nanofluids in a microchannel at Re = 50. By comparing the simulation results of pure water, nanofluids without calculated nanoparticle-fluid interaction forces and nanofluids with calculated nanoparticle-fluid interaction forces, the effects of physical properties improvement and interaction forces on flow and heat transfer are quantified.

Findings

The findings show that the nanofluid (φ = 3%, R = 10 nm) increases the average Nusselt number by 22.40% at Re = 50. In particular, 16.16% of the improvement relates to nanoparticles optimizing the thermophysical parameters of the base fluid. The remaining 6.24% relates to the disturbance of the thermal boundary layer caused by the interaction between nanoparticles and the base fluid. Moreover, the nanoparticle has a negligible effect on the average Fanning friction factor. Ultimately, we conclude that the nanofluid is an excellent heat transfer working medium based on its performance evaluation criterion, PEC = 1.225.

Originality/value

To the best of the authors' knowledge, this research quantifies for the first time the contribution of nanoparticle-liquid interactions and nanofluids physical properties to enhanced heat transfer, advancing the knowledge of the nanoparticle's behavior in liquid systems.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 July 2004

J.L. Xu, Z.Q. Zhou and X.D. Xu

The molecular dynamics simulation of micro‐Poiseuille flow for liquid argon in nanoscale was performed in non‐dimensional unit system with the control parameters of channel size…

1793

Abstract

The molecular dynamics simulation of micro‐Poiseuille flow for liquid argon in nanoscale was performed in non‐dimensional unit system with the control parameters of channel size, coupling parameters between solid wall and liquid particles, and the gravity force. The molecular forces are considered not only among the liquid molecules, but also between the solid wall and liquid molecules. The simulation shows that a larger gravity force produces a larger shear rate and a higher velocity distribution. In terms of the gravity force, there are three domain regions each with distinct flow behaviors: free molecule oscillation, coupling and gravity force domain regions. Stronger fluid/wall interactions can sustain a larger coupling region, in which the flow is controlled by the balance of the intermolecular force and the gravity force. Strong surface interaction leads to small slip lengths and the slip lengths are increased slightly with increasing the shear rate. Weak surface interaction results in higher slip lengths and the slip lengths are dramatically decreased with increasing the shear rate. The viscosities are nearly kept constant (Newton flow behavior) if the non‐dimensional shear rate is below 2.0. At higher non‐dimensional shear rate larger than 2.0, the viscosities have a sharp increase with increasing the shear rate, and the non‐Newton flow appears.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 14 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 March 2021

Z.B. Xing, Xingchao Han, Hanbing Ke, Q.G. Zhang, Zhiping Zhang, Huijin Xu and Fuqiang Wang

A combination of highly conductive porous media and nanofluids is an efficient way for improving thermal performance of relevant applications. For precisely predicting the flow…

Abstract

Purpose

A combination of highly conductive porous media and nanofluids is an efficient way for improving thermal performance of relevant applications. For precisely predicting the flow and thermal transport of nanofluids in porous media, the purpose of this paper is to explore the inter-phase coupling numerical methods.

Design/methodology/approach

Based on the lattice Boltzmann (LB) method, this study combines the convective flow, non-equilibrium thermal transport and phase interactions of nanofluids in porous matrix and proposes a new multi-phase LB model. The micro-scale momentum and heat interactions are especially analyzed for nanoparticles, base fluid and solid matrix. A set of three-phase LB equations for the flow/thermal coupling of base fluid, nanoparticles and solid matrix is established.

Findings

Distributions of nanoparticles, velocities for nanoparticles and the base fluid, temperatures for three phases and interaction forces are analyzed in detail. Influences of parameters on the nanofluid convection in the porous matrix are examined. Thermal resistance of nanofluid convective transport in porous structures are comprehensively discussed with the models of multi-phases. Results show that the Rayleigh number and the Darcy number have significant influences on the convective characteristics. The result with the three-phase model is mildly larger than that with the local thermal non-equilibrium model.

Originality/value

This paper first creates the multi-phase theoretical model for the complex coupling process of nanofluids in porous structures, which is useful for researchers and technicians in fields of thermal science and computational fluid dynamics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 February 2024

Chengguo Liu, Junyang Li, Zeyu Li and Xiutao Chen

The study aims to equip robots with the ability to precisely maintain interaction forces, which is crucial for tasks such as polishing in highly dynamic environments with unknown…

Abstract

Purpose

The study aims to equip robots with the ability to precisely maintain interaction forces, which is crucial for tasks such as polishing in highly dynamic environments with unknown and varying stiffness and geometry, including those found in airplane wings or thin, soft materials. The purpose of this study is to develop a novel adaptive force-tracking admittance control scheme aimed at achieving a faster response rate with higher tracking accuracy for robot force control.

Design/methodology/approach

In the proposed method, the traditional admittance model is improved by introducing a pre-proportional-derivative controller to accelerate parameter convergence. Subsequently, the authors design an adaptive law based on fuzzy logic systems (FLS) to compensate for uncertainties in the unknown environment. Stability conditions are established for the proposed method through Lyapunov analysis, which ensures the force tracking accuracy and the stability of the coupled system consisting of the robot and the interaction environment. Furthermore, the effectiveness and robustness of the proposed control algorithm are demonstrated by simulation and experiment.

Findings

A variety of unstructured simulations and experimental scenarios are designed to validate the effectiveness of the proposed algorithm in force control. The outcomes demonstrate that this control strategy excels in providing fast response, precise tracking accuracy and robust performance.

Practical implications

In real-world applications spanning industrial, service and medical fields where accurate force control by robots is essential, the proposed method stands out as both practical and straightforward, delivering consistently satisfactory performance across various scenarios.

Originality/value

This research introduces a novel adaptive force-tracking admittance controller based on FLS and validated through both simulations and experiments. The proposed controller demonstrates exceptional performance in force control within environments characterized by unknown and varying.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 August 2024

Hong Zhan, Dexi Ye, Chao Zeng and Chenguang Yang

This paper aims to deal with the force and position tracking problem when a robot performs a task in interaction with an unknown environment and presents a hybrid control strategy…

Abstract

Purpose

This paper aims to deal with the force and position tracking problem when a robot performs a task in interaction with an unknown environment and presents a hybrid control strategy based on variable admittance control and fixed-time control.

Design/methodology/approach

A hybrid control strategy based on variable admittance control and fixed-time control is presented. Firstly, a variable stiffness admittance model control based on proportional integral and differential (PID) is adopted to maintain the expected force value during the task execution. Secondly, a fixed-time controller based on radial basis function neural network (RBFNN) is introduced to handle the model uncertainties and ensure the fast position tracking convergence of the robot system, while the singularity problem is also avoided by designing the virtual control variable with piecewise function.

Findings

Simulation studies conducted on the robot manipulator with two degrees of freedom have verified the superior performance of the proposed control strategy comparing with other methods.

Originality/value

A hybrid control scheme for robot–environment interaction is presented, in which the variable stiffness admittance method is adopted to adjust the interaction force to the desired value, and the RBFNN-based fixed-time position controller without singularity problem is designed to ensure the fast convergence of the robot system with model uncertainty.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 27 July 2021

Omer Faruk Argin and Zeki Yagiz Bayraktaroglu

This paper aims to present a novel modular design framework for the haptic teleoperation of single-master/multiple-slave (SM/MS) systems with cooperating manipulators.

Abstract

Purpose

This paper aims to present a novel modular design framework for the haptic teleoperation of single-master/multiple-slave (SM/MS) systems with cooperating manipulators.

Design/methodology/approach

The user commands the remote-leader robot and the slave remote robot follows the leader in a leader–follower formation. The remote-slave is purely force-controlled. A virtual model of the remote environment is introduced between the local and remote environments through simulation software. Locally generated motion inputs are transmitted to the remote environment through the virtual model. A haptic coupling is designed in the virtual environment and the haptic feedback is transmitted to the user along with the forces measured in the remote environment. The controllers proposed in this work are experimentally evaluated with experienced and inexperienced users.

Findings

The proposed haptic interaction model contributes to the total force feedback and smoothens the high-frequency signals occurring at the physical interaction in the remote environment. Experimental results show that the implemented controllers including the proposed haptic interaction improve the teleoperation performances in terms of trajectory tracking. Furthermore, pure force control of the remote-slave is shown to enhance the robustness of the teleoperation against external disturbances. Satisfactory teleoperation performances are observed with both experienced and inexperienced users.

Originality/value

The proposed SM/MS teleoperation system involves a multi-purpose virtual simulator and a purely force-controlled remote-slave manipulator in a modular cooperative configuration. The uniquely defined structure of the proposed haptic coupling is used in modeling the interaction between the local and remote manipulators on the one hand, and between cooperating remote manipulators on the other.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Abstract

Details

Understanding Intercultural Interaction: An Analysis of Key Concepts, 2nd Edition
Type: Book
ISBN: 978-1-83753-438-8

Book part
Publication date: 2 December 2019

Frank Fitzpatrick

Abstract

Details

Understanding Intercultural Interaction: An Analysis of Key Concepts
Type: Book
ISBN: 978-1-83867-397-0

1 – 10 of over 94000