Search results

1 – 10 of over 12000
Article
Publication date: 5 September 2016

William Thollet, Guillaume Dufour, Xavier Carbonneau and Florian Blanc

The purpose of this paper is to explore a methodology that allows to represent turbomachinery rotating parts by replacing the blades with a body force field. The objective is to…

428

Abstract

Purpose

The purpose of this paper is to explore a methodology that allows to represent turbomachinery rotating parts by replacing the blades with a body force field. The objective is to capture interactions between a fan and an air intake at reduced cost, as compared to full annulus unsteady computations.

Design/methodology/approach

The blade effects on the flow are taken into account by adding source terms to the Navier-Stokes equations. These source terms give the proper amount of flow turning, entropy, and blockage to the flow. Two different approaches are compared: the source terms can be computed using an analytic model, or they can directly be extracted from RANS computations with the blade’s geometry.

Findings

The methodology is first applied to an isolated rotor test case, which allows to show that blockage effects have a strong impact on the performance of the rotor. It is also found that the analytic body force model underestimates the mass flow in the blade row for choked conditions. Finally, the body force approach is used to capture the coupling between a fan and an air intake at high angle of attacks. A comparison with full annulus unsteady computations shows that the model adequately captures the potential effects of the fan on the air intake.

Originality/value

To the authors’ knowledge, it is the first time that the analytic model used in this paper is combined with the blockage source terms. Furthermore, the capability of the model to deal with flows in choked conditions was never assessed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 September 2004

Lidija Frgić, Pavao Marović and Krešimir Tor

This paper discusses the pullout capacity of spatial anchors in soil under applied vertical force. In field tests, the pullout forces were gradually increased and the ground…

Abstract

This paper discusses the pullout capacity of spatial anchors in soil under applied vertical force. In field tests, the pullout forces were gradually increased and the ground surface displacements measured in two profiles perpendicular to each other. The laboratory and field tests were performed for several embedment depths and anchor diameter ratios in the same sand and under the same conditions. The anchor pulling was also laboratory‐tested so that the vertical anchor displacements were given and the corresponding force intensity measured. The finite element method was used for the pullout force computation in test cases. The relations between displacements and pullout forces obtained by the laboratory tests, field tests and numerical computations were statistically analysed. Owing to gradual convergence of pullout forces towards the limit value, the exponential function was adopted as an approximation curve. The two obtained constants of the function represent the significant mechanical characteristics. The first is limit pullout force and the second gives the total stiffness of the soil mechanical system.

Details

Engineering Computations, vol. 21 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 November 2011

Raffaele Albanese, Flavio Calvano, Giorgio DalMut, Fabrizio Ferraioli, Alessandro Formisano, Fabrizio Marignetti, Raffaele Martone, Guglielmo Rubinacci, Antonelle Tamburrino and Salvatore Ventre

The purpose of this paper is to present a numerical approach for the computation of 3D magnetic fields in rotating electrical machines. The technique is suitable for the…

Abstract

Purpose

The purpose of this paper is to present a numerical approach for the computation of 3D magnetic fields in rotating electrical machines. The technique is suitable for the computation of flux densities and forces in the end windings of large synchronous turbo generators (TG).

Design/methodology/approach

The magnetostatic FEM model of the generator end windings is carried out for different displacements of the rotor axis to the stator magnetomotive force (MMF) axis. The method is based on a parallel integral formulation allowing to substantially reduce the computational effort.

Findings

The computational model requires only the discretization of magnetic materials and conductors and is fast enough for carrying out 3D analyses on a time scale fast enough for the needs of the designer. As far as the present application is concerned, the analysis of a synchronous generator in the class of 300‐400 MVA has shown that the most stressed elements of the armature conductors are those closer to the stator ends. The study demonstrates that the maximum stress component on the end windings is axial and is achieved when the MMF is aligned to the direct axis.

Originality/value

The present approach combining an efficient integral formulation, the sparsification of the relevant matrices and the parallel implementation of the related algorithms gives rise to an original computational tool that allows a more accurate description of the machine in comparison to other numerical simulations that can be found in the literature.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 1998

Vlatko Stoilkov, Milan Cundev and Lidija Petkovska

Experience and exploring the linear AC and DC actuators confirm the necessity of the computation of forces distribution as the step preceding their optimal design. This paper…

283

Abstract

Experience and exploring the linear AC and DC actuators confirm the necessity of the computation of forces distribution as the step preceding their optimal design. This paper expresses an approach to computations of different forces of low‐voltage linear actuators acting on both mechanical and/or electrical parts. The computations are based on magnetic coenergy concept associated with virtual work method and simulated by step displacement of the armature from the total open through total closed position. The magnetic coenergy is numerically computed through the flux‐linkage approach, where the magnetic field distribution is obtained by applying the finite element method in 3D‐domain.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 17 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 December 2003

G. Deliége, F. Henrotte, H. Vande Sande and K. Hameyer

A finite element analysis of a permanent magnet transverse flux linear actuator is presented. In this application where we need a small model (for optimisation purposes) as well…

Abstract

A finite element analysis of a permanent magnet transverse flux linear actuator is presented. In this application where we need a small model (for optimisation purposes) as well as a high accuracy on the computed force, we propose to combine several models with different levels of size and complexity, in order to progressively elaborate an accurate, but nevertheless tractable, model of the system.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 22 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 December 2003

F. Wang, Y.T. Feng and D.R.J. Owen

Some issues related to effective parallel implementation of the combined finite‐discrete element approach on PC clusters are discussed. Attention is focused on the interprocessor…

Abstract

Some issues related to effective parallel implementation of the combined finite‐discrete element approach on PC clusters are discussed. Attention is focused on the interprocessor communications. Three communication schemes suitable for different problems are presented. The worker‐to‐manager scheme is simple to implement. The neighbour‐to‐neighbour scheme is sophisticated with regard to programming, and requires extra memory space, but has good overall performance for larger problems. The mixed worker‐manager scheme can balance the difficulty in programming and the overall communication performance. The effects of subdomain buffer zone on communications are also demonstrated by numerical examples.

Details

Engineering Computations, vol. 20 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 2001

D.R.J. Owen and Y.T. Feng

This paper outlines a dynamic domain decomposition‐based parallel strategy for combined finite/discrete element analysis of multi‐fracturing solids and discrete systems. Attention…

1480

Abstract

This paper outlines a dynamic domain decomposition‐based parallel strategy for combined finite/discrete element analysis of multi‐fracturing solids and discrete systems. Attention is focused on the parallelised interaction detection between discrete objects. Two graph representation models for discrete objects in contact are proposed which lay the foundation of the current development. In addition, a load imbalance detection and re‐balancing scheme is also suggested to enhance the parallel performance. Finally, numerical examples are provided to illustrate the parallel performance achieved with the current implementation.

Details

Engineering Computations, vol. 18 no. 3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 2006

G. Deliége, F. Henrotte and K. Hameyer

The purpose of this paper is to analyse the accuracy of the thrust force of a linear actuator computed with different finite elements models.

Abstract

Purpose

The purpose of this paper is to analyse the accuracy of the thrust force of a linear actuator computed with different finite elements models.

Design/methodology/approach

A series of 2D and 3D models corresponding to different levels of approximation of the original problem are considered. A reliable error estimator based on dual magnetostatic formulations is used.

Findings

A 3D model does not necessarily ensure more accurate results than a 2D model. Because of limitations on the number of mesh elements, the discretisation error in 3D can be of the same order of magnitude as the error introduced by the 2D approximation.

Originality/value

The results emphasise the need to consider errors arising from different simplifications with respect to one another, in order to avoid improvements of the model increasing the complexity but not improving the accuracy of the results.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 25 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 November 2016

Diogo Tenório Cintra, Ramiro Brito Willmersdorf, Paulo Roberto Maciel Lyra and William Wagner Matos Lira

The purpose of this paper is to present a methodology of hybrid parallelization applied to the discrete element method that combines message-passing interface and OpenMP to…

Abstract

Purpose

The purpose of this paper is to present a methodology of hybrid parallelization applied to the discrete element method that combines message-passing interface and OpenMP to improve computational performance. The scheme is based on mapping procedures based on Hilbert space-filling curves (HSFC).

Design/methodology/approach

The methodology uses domain decomposition strategies to distribute the computation of large-scale models in a cluster. It also partitions the workload of each subdomain among threads. This additional procedure aims to reach higher computational performance by adjusting the usage of message-passing artefacts and threads. The main objective is to reduce the communication among processes. The work division by threads employs HSFC in order to improve data locality and to avoid related overheads. Numerical simulations presented in this work permit to evaluate the proposed method in terms of parallel performance for models that contain up to 3.2 million particles.

Findings

Distinct partitioning algorithms were used in order to evaluate the local decomposition scheme, including the recursive coordinate bisection method and a topological scheme based on METIS. The results show that the hybrid implementations reach better computational performance than those based on message passing only, including a good control of load balancing among threads. Case studies present good scalability and parallel efficiencies.

Originality/value

The proposed approach defines a configurable execution environment for numerical models and introduces a combined scheme that improves data locality and iterative workload balancing.

Details

Engineering Computations, vol. 33 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 May 2010

Sławomir Stępień

The purpose of this paper is to calculate the electromagnetic torque at a radius of an integration contour for which an optimal value is determined.

Abstract

Purpose

The purpose of this paper is to calculate the electromagnetic torque at a radius of an integration contour for which an optimal value is determined.

Design/methodology/approach

To analyze electrical machine dynamics, the electromagnetic torque should be precisely determined. This paper presents a method for calculating the torque, where the radius of the integration contour is variable and estimated from the field distribution.

Findings

The electromagnetic torque of the three‐phase AC motor model proposed in TEAM Problem No. 30 is estimated using the proposed method. The obtained results are compared to solutions obtained analytically.

Originality/value

This paper examines the application of the presented method to determine the electromagnetic torque in three‐phase AC motors.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 12000