Search results

1 – 10 of 20
Article
Publication date: 6 February 2024

Andrea Lucherini and Donatella de Silva

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings…

Abstract

Purpose

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings are particularly complex materials to be modelled and predicted, which can be extremely useful especially for performance-based fire safety designs. In addition, many parameters influence their performance, and this challenges the definition and quantification of their material properties. Several approaches and models of various complexities are proposed in the literature, and they are reviewed and analysed in a critical literature review.

Design/methodology/approach

Analytical, finite-difference and finite-element methods for modelling intumescent coatings are compared, followed by the definition and quantification of the main physical, thermal, and optical properties of intumescent coatings: swelled thickness, thermal conductivity and resistance, density, specific heat capacity, and emissivity/absorptivity.

Findings

The study highlights the scarce consideration of key influencing factors on the material properties, and the tendency to simplify the problem into effective thermo-physical properties, such as effective thermal conductivity. As a conclusion, the literature review underlines the lack of homogenisation of modelling approaches and material properties, as well as the need for a universal modelling method that can generally simulate the performance of intumescent coatings, combine the large amount of published experimental data, and reliably produce fire-safe performance-based designs.

Research limitations/implications

Due to their limited applicability, high complexity and little comparability, the presented literature review does not focus on analysing and comparing different multi-component models, constituted of many model-specific input parameters. On the contrary, the presented literature review compares various approaches, models and thermo-physical properties which primarily focusses on solving the heat transfer problem through swelling intumescent systems.

Originality/value

The presented literature review analyses and discusses the various modelling approaches to describe and predict the behaviour of swelling intumescent coatings as fire protection for structural materials. Due to the vast variety of available commercial products and potential testing conditions, these data are rarely compared and combined to achieve an overall understanding on the response of intumescent coatings as fire protection measure. The study highlights the lack of information and homogenisation of various modelling approaches, and it underlines the research needs about several aspects related to the intumescent coating behaviour modelling, also providing some useful suggestions for future studies.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 September 2022

A. Gayathri, P. Varalakshmi and M. G. Sethuraman

This study aims to develop multifunctional, namely, superhydrophobic, flame-retardant and antibacterial, coatings over cotton fabric, using casein as green-based flame-retardant…

Abstract

Purpose

This study aims to develop multifunctional, namely, superhydrophobic, flame-retardant and antibacterial, coatings over cotton fabric, using casein as green-based flame-retardant and silver nanoparticles as antibacterial agent by solution immersion method.

Design/methodology/approach

The cotton fabric is first coated with casein to make it flame-retardant. AgNPs synthesized using Cinnamomum zeylanicum bark extract is coated over the casein layer. Finally, stearic acid is used to coat the cotton to make it superhydrophobic. X-ray diffraction, transmission electron microscopy analysis and ultraviolet-visible spectroscopy are used to investigate the produced AgNPs. The as-prepared multifunctional cotton is characterized by scanning electron microscopy, energy dispersive X-ray analysis and attenuated total reflection-infrared studies. Flame test, limiting oxygen index test and thermogravimetric analyzer studies have also been performed to study the flame-retardant ability and thermal stability of treated fabric, respectively. The antibacterial effect of the coatings is evaluated by disc-diffusion technique. Water contact angle is determined to confirm the superhydrophobic nature of cotton fabric.

Findings

The outcomes of this study showed that the prepared multifunctional cotton fabric had maximum contact angle of greater than 150° with good flame retardancy, high thermal stability, greater washing durability and high antibacterial activity against the growth of Pseudomonas aeruginosa and Acinetobacter indicus. Additionally, the as-prepared superhydrophobic cotton showed an excellent oil–water separation efficiency.

Research limitations/implications

The trilayered multifunctional cotton fabric has limiting washing durability up to 20 washing cycles. Treated functional fabric can be used as an antibacterial, therapeutic, water repellent and experimental protective clothing for medical, health care, home curtains and industrial and laboratory purposes.

Originality/value

The study brings out the robustness of this method in the development of multifunctional cotton fabrics.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 8 April 2024

Fukang Yang, Wenjun Wang, Yongjie Yan and YuBing Dong

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to…

Abstract

Purpose

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to improve the thermal insulation performance of polyethylene terephthalate (PET), the SiO2 aerogel/PET composites slices and fibers were prepared, and the effects of the SiO2 aerogel on the morphology, structure, crystallization property and thermal conductivity of the SiO2 aerogel/PET composites slices and their fibers were systematically investigated.

Design/methodology/approach

The mass ratio of purified terephthalic acid and ethylene glycol was selected as 1:1.5, which was premixed with Sb2O3 and the corresponding mass of SiO2 aerogel, and SiO2 aerogel/PET composites were prepared by direct esterification and in-situ polymerization. The SiO2 aerogel/PET composite fibers were prepared by melt-spinning method.

Findings

The results showed that the SiO2 aerogel was uniformly dispersed in the PET matrix. The thermal insulation coefficient of PET was significantly reduced by the addition of SiO2 aerogel, and the thermal conductivity of the 1.0 Wt.% SiO2 aerogel/PET composites was reduced by 75.74 mW/(m · K) compared to the pure PET. The thermal conductivity of the 0.8 Wt.% SiO2 aerogel/PET composite fiber was reduced by 46.06% compared to the pure PET fiber. The crystallinity and flame-retardant coefficient of the SiO2 aerogel/PET composite fibers showed an increasing trend with the addition of SiO2 aerogel.

Research limitations/implications

The SiO2 aerogel/PET composite slices and their fibers have good thermal insulation properties and exhibit good potential for application in the field of thermal insulation, such as warm clothes. In today’s society where the energy crisis is becoming increasingly serious, improving the thermal insulation performance of PET to reduce energy loss will be of great significance to alleviate the energy crisis.

Originality/value

In this study, SiO2 aerogel/PET composite slices and their fibers were prepared by an in situ polymerization process, which solved the problem of difficult dispersion of nanoparticles in the matrix and the thermal conductivity of PET significantly reduced.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 March 2023

Khaled Mohamed Seddik, Lamiaa Khamal El-Gabry and Marwa Atif Ali

This study aims to use hexanediol, pentaerythritol and keratin as crosslinking agents on the acrylic fabric used as garments.

Abstract

Purpose

This study aims to use hexanediol, pentaerythritol and keratin as crosslinking agents on the acrylic fabric used as garments.

Design/methodology/approach

Plain 1/1 acrylic fabric was produced with 14 and 11 weft yarn/cm using yarn count 28/2 Ne, then it was modified with different agents, and the effect of crosslinking on some of the inherent properties was determined. The color strength as well as washing fastness was evaluated. The Fourier transform infrared spectroscopy determined the changes that acted in the structure of the treated acrylic fabrics. Several physical and functional utility characteristics were studied such as stiffness, crease recovery, tensile strength and elongation, pilling, air permeability, absorbency and static electricity.

Findings

Polyacrylonitrile is one of the man-made materials used in the textile field; despite novel characteristics, it has some negative properties, especially in absorbency and pilling, which are improved after treatment.

Originality/value

The results presented that the different conditions that were used with cross-linkers enhanced the acrylic fabrics properties. Where analysis of variance test at P-value 0.05 and radar chart area offered that the treated acrylic fabric with 5% (w/v) keratin accomplished the highest preferable properties for end use.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 31 August 2023

Uche Emmanuel Edike, Olumide Afolarin Adenuga, Daniel Uwumarogie Idusuyi and Abdulkabir Adedamola Oke

The purpose of this study is to advance the application of pulverised cow bone ash (PCBA) as a partial replacement of cement in soil stabilisation for the production of bricks…

Abstract

Purpose

The purpose of this study is to advance the application of pulverised cow bone ash (PCBA) as a partial replacement of cement in soil stabilisation for the production of bricks. The study investigated the impact of PCBA substitution on the characteristic strength of clay bricks under variant curing media.

Design/methodology/approach

Dried cow bones were pulverised, and an energy-dispersive X-ray fluorescence test was conducted on PCBA samples to determine the chemical constituents and ascertain the pozzolanic characteristics. Ordinary Portland cement (OPC) and PCBA were blended at 100%, 75%, 50%, 25% and 0% of cement substitution by mass to stabilise lateritic clay at 10% total binder content for the production of bricks. The binder-to-lateritic clay matrixes were used to produce clay bricks and cylinders for compressive and splitting tensile strength tests, respectively.

Findings

The study found that PCBA and OPC have similar chemical compositions. The strength of the clay bricks increased with curing age, and the thermal curing of clay bricks positively impacted the strength development. The study established that PCBA is a suitable substitute for cement, up to 25% for stabilisation in clay brick production.

Practical implications

Construction stakeholders can successfully use a PCBA-OPC binder blend of 1:3 to stabilise clay at 10% total binder content for the production of bricks. The stabilised clay bricks should be cured at an elevated temperature of approximately 90°C for 48 h to achieve satisfactory performance.

Originality/value

The PCBA-OPC binder blend provides adequate soil stabilisation for the production of clay bricks and curing the clay bricks at elevated temperature. This aspect of the biomass/OPC binder blend has not been explored for brick production, and this is important for the reduction of the environmental impacts of cement production and waste from abattoirs.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 4 January 2024

Dirk H.R. Spennemann

Invented in late 1890s, asbestos cement sheeting rose to prominence during the post-Second World War period as a building material for low-cost housing by state housing…

Abstract

Purpose

Invented in late 1890s, asbestos cement sheeting rose to prominence during the post-Second World War period as a building material for low-cost housing by state housing commissions and low-income families (“fibro homes”). The adverse health effects of asbestos fibres in the building industry and home renovation activities are well documented. Fibro homes of the 1950s and 1960s are increasingly coming under the gaze of heritage studies, which brings to the fore the question of how to deal with the asbestos cement sheeting most are clad with.

Design/methodology/approach

This paper provides the first systematic review to assess the literature (126 papers were identified in Google Scholar and scanned for content) on the conservation management of asbestos cement sheeting in heritage properties.

Findings

Overall, engagement with the conservation management of asbestos cement sheeting in heritage properties was low, with only two sources dealing with asbestos cement sheeting in any level of detail. The studies note that if asbestos cement sheeting is in good condition, it should be left alone. Numerous conservation and repair options do exist, in particular the application of (coloured) sealants that extend the life of asbestos cement sheets and asbestos cement roofing.

Originality/value

This paper represents the first systematic review to assess conservation management options for asbestos cement sheeting in heritage properties.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 30 October 2023

Aizhan Doshibekova, Indira Jurinskaya, Salikh Tashpulatov, Raushan Zhilisbayeva, Lazzat Sarttarova, Rustam Akbarov and Marzhan Kalmakhanova

This paper aims to study the possibility of electroplating copper coatings on chemically and chemical-galvanically nickel-plated acrylic fibers, to be further processed into yarn…

Abstract

Purpose

This paper aims to study the possibility of electroplating copper coatings on chemically and chemical-galvanically nickel-plated acrylic fibers, to be further processed into yarn, fabrics, knitwear and nonwoven materials.

Design/methodology/approach

Electrically conductive fibers with different copper contents have been obtained, and the effect of electrolyte pH, its composition, current strength at the first and second cathodes, as well as the metallization time on the electrophysical, physical and mechanical properties of copper-containing fibers, has been studied.

Findings

The studies have shown that with an increase in the copper content, the electrical conductivity, the uniformity of the coating and the uniformity of the electrophysical properties (for chemical-galvanically nickel-plated fiber) increase. In the case of copper plating of chemically nickel-plated fiber, the coefficient of variation in electrical resistance increases with increasing plating time, even though the copper content increases, and the coefficient of variation in copper content and electrical resistance decreases. The physical and mechanical properties of copper-containing fibers differ slightly from the original (subjected to copper plating) and industrial Nitron fibers. With copper plating, the strength of the fiber practically does not decrease, and the elongation decreases somewhat, compared with the mass-produced Nitron fiber.

Originality/value

The physical and mechanical properties of copper-containing fibers are quite high, which makes it possible to be successfully further processed into yarn, fabrics, knitwear and nonwoven materials.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 12 January 2023

Manoj Kumar Paras, Rudrajeet Pal and Daniel Ekwall

The process of redesigning is one of the essential steps in upcycling, which comprises ideation, reconstruction and fitting. This paper aims to study the best practice of…

Abstract

Purpose

The process of redesigning is one of the essential steps in upcycling, which comprises ideation, reconstruction and fitting. This paper aims to study the best practice of upcycling in the clothing industry. This study is an attempt to standardise upcycling/redesign process.

Design/methodology/approach

An exploratory approach was adopted to perform the research. This study draws on the multiple organisations involved in the upcycling of clothes. The organisations chosen for this study are located in Sweden and Romania using the snowball technique. Semi-structured interviews, direct and participatory observation approaches were used to collect information. The collected data are systematically analysed using NVivo 10 software.

Findings

This paper provides empirical insights into the diverse practices of upcycling. Process, product and demand-based were three fundamental approaches to performing the redesigning process. The fabric quality and durability, variations in size, colour and pattern, skills and efforts required in the extraction of parts and environmental consciousness and awareness were the main factors influencing upcycling process.

Research limitations/implications

The use of the European case may miss best practices from the other region. This study may help scholars to understand the method of upcycling. A practitioner of upcycling can use the findings to improve and standardise the existing process. This research is beneficial for society, as this leads to the reduction of textile wastage.

Originality/value

This paper conceptualises some of the best practices of clothes redesign. This provides a good insight for the organisation for the improvement in the redesign business.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 19 June 2023

Fatma Altuntas

The textile sector is one of the sectors where competition is intense and requires the production of high-value-added products. This study aims to conduct patent analysis to find…

Abstract

Purpose

The textile sector is one of the sectors where competition is intense and requires the production of high-value-added products. This study aims to conduct patent analysis to find the technology status, recent trends, applications and technological evaluations of protective textile technologies in practice.

Design/methodology/approach

More than 36,840 patent documents related to protective textile technologies are available for researchers, patent examiners and patent researchers. Patent analysis is conducted to report the technology status, recent trends and applications of protective textile technologies. This analysis provides insights into the possible future directions of protective textile technologies in practice. Additionally, association rule mining (ARM) is performed to find the hidden patterns among protective textile technologies.

Findings

The development of protective textile technologies is revealed by the technology evaluation in this study. In addition, the sub-technology classes affecting protective textile technologies are examined using the cooperative patent classification (CPC) codes of the patent documents. Technology status and recent trends of protective textile technologies are provided in detail. The results of this study show that (1) protective textile technologies are constantly being developed, (2) the working areas of medical protective textiles are increasing, (3) there are frequent studies on fabric structures for saving lives within the framework of human needs and (4) there are four technology classes, namely A41D, Y10T, B32B and A62B impacting the other technology classes related to textile technologies such as D10B, Y10T, F41H, A62D, D04H, Y10S and D10B.

Originality/value

To have a competitive advantage in the marketplace, evaluation of textile technologies is critical in developing “functionalized” and “technologized” textile products. In particular, evaluating technologies in developing protective textile products is extremely important to meet customer demands and present competitive products in the market. Examining these patents for technology developers, decision-makers and policymakers is an urgent and necessary job. However, studies examining the development of protective textile technologies with patent analysis are very limited in the literature. To fill this gap, technology status, recent trends and applications of protective textile technologies are reported based on patent analysis and ARM in this study.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 27 December 2022

Efrida Basri, Resa Martha, Ratih Damayanti, Istie Rahayu, Wayan Darmawan and Philippe Gérardin

The surface characteristics of thermally and chemically modified wood, such as surface roughness, surface free energy (SFE) and wettability, are important properties that…

Abstract

Purpose

The surface characteristics of thermally and chemically modified wood, such as surface roughness, surface free energy (SFE) and wettability, are important properties that influence further manufacturing processes such as gluing and coating. The aim of this paper was to determine the influence of the surface roughness of thermally and chemically modified teak wood on their SFE, wettability and bonding quality for water-based acrylic and solvent-based alkyd varnishes. In addition, durability against subterranean termites in the field of these modified teak woods was also investigated to give a valuable information for their further application.

Design/methodology/approach

The woods tested in this study were fast-growing teak woods that were prepared in untreated and treated with furfuryl alcohol (FA), glycerol maleic anhydride (GMA) and thermal. SFE values were calculated using the Rabel method. The wettability values were measured based on the contact angle between varnish liquids and wood surfaces using the sessile drop method, and the Shi and Gardner model model was used to evaluate the wettability of the varnishes on the wood surface. The bonding quality of the varnishes was measured using a cross-cut test based on ASTM 3359-17 standard. In addition, durability against subterranean termites in the field of these modified teak woods was also investigated according to ASTM D 1758-06.

Findings

The results showed that furfurylated and GMA-thermal 220°C improved the durability of teak wood against termites. The furfurylated teak wood had the roughest surface with an arithmetic average roughness (Ra) value of 15.65 µm before aging and 27.11 µm after aging. The GMA-thermal 220°C treated teak wood was the smoothest surface with Ra value of 6.44 µm before aging and 13.75 µm after aging. Untreated teak wood had the highest SFE value of 46.90 and 57.37 mJ/m2 before and after aging, respectively. The K values of untreated and treated teak wood increased owing to the aging treatment. The K values for the water-based acrylic varnish were lower than that of the solvent-based alkyd varnish. The untreated teak wood with the highest SFE produced the highest bonding quality (grades 4–5) for both acrylic and alkyd varnishes. The solvent-based alkyd varnish was more wettable and generated better bonding quality than the water-based acrylic varnish.

Originality/value

The originality of this research work is that it provides evaluation values of the durability and SFE. The SFE value can be used to quantitatively determine the wettability of paint liquids on the surface of wood and its varnish bonding quality.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 20