Search results

1 – 10 of 19
Article
Publication date: 3 October 2022

Sara Mirzabagheri and Osama (Sam) Salem

Since columns are critical structural elements, they shall withstand hazards without any considerable damage. In the case of a fire, although concrete has low thermal conductivity…

82

Abstract

Purpose

Since columns are critical structural elements, they shall withstand hazards without any considerable damage. In the case of a fire, although concrete has low thermal conductivity compared to other construction materials, its properties are changed at elevated temperatures. Most critically, the residual compressive strengths of reinforced concrete columns are significantly reduced after fire exposure. Validation of the worthiness of rehabilitating concrete structures after fire exposure is highly dependent on accurately determining the residual strengths of fire-damaged essential structural elements such as columns.

Design/methodology/approach

In this study, eight reinforced-concrete columns (200 × 200 × 1,500 mm) that were experimentally examined in a prior related study have been numerically modelled using ABAQUS software to investigate their residual compressive strengths after exposure to different durations of standard fire (i.e. one and two hours) while subjected to different applied load ratios (i.e. 20 and 40% of the compressive resistance of the column). Outcomes of the numerical simulations were verified against the prior study's experimental results.

Findings

In a subsequent phase, the results of a parametric study that has been completed as part of the current study to investigate the effects of the applied load ratios show that the application of axial load up to 80% of the compressive resistance of the column did not considerably influence the residual compressive strength of the shorter columns (i.e. 1,500 and 2,000-mm high). However, increasing the height of the column to 2,500 or 3,000 mm considerably reduced the residual compressive strength when the load ratio applied on the columns exceeded 60 and 40%, respectively. Also, when the different columns were simulated under two-hour standard fire exposure, the dominant failure was buckling rather than concrete crushing which was the typical failure mode in most columns.

Originality/value

The outcomes of the numerical study presented in this paper reflect the residual compressive strength of RC columns subjected to various applied load ratios and standard fire durations. Also, the parametric study conducted as part of this research on the effects of higher load ratios and greater column heights on the residual compressive strength of the fire-damaged columns is practical and efficient. The developed computer models can be beneficial to assist engineers in assessing the validity of rehabilitating concrete structures after being exposed to fire.

Details

Journal of Structural Fire Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 30 August 2022

Ilias Thanasoulas, Dan Lauridsen, Bjarne Paulsen Husted and Luisa Giuliani

The purpose of this study is to contribute toward providing the main aspects of numerical modeling the fire behavior of steel structures with finite elements (FEs). The…

Abstract

Purpose

The purpose of this study is to contribute toward providing the main aspects of numerical modeling the fire behavior of steel structures with finite elements (FEs). The application of the method is presented for a characteristic case study comprising the series of large-scale fire door tests performed at the Danish Institute of Fire and Security Technology.

Design/methodology/approach

Following a general overview of current practices in structural fire engineering, the FE method is used to simulate the large-scale furnace tests on steel doors with thermal insulation exposed to standard fire.

Findings

The FE model is compared with the fire test results, achieving good agreement in terms of developed temperatures and deformations.

Originality/value

The numerical methodology and recommended practices for modeling the fire behavior of steel structures are presented, which can be used in support of performance-based fire design standards.

Details

Journal of Structural Fire Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 7 April 2023

Chiara Bedon and Christian Louter

Glass material is largely used for load-bearing components in buildings. For this reason, standardized calculation methods can be used in support of safe structural design in…

Abstract

Purpose

Glass material is largely used for load-bearing components in buildings. For this reason, standardized calculation methods can be used in support of safe structural design in common loading and boundary conditions. Differing from earlier literature efforts, the present study elaborates on the load-bearing capacity, failure time and fire endurance of ordinary glass elements under fire exposure and sustained mechanical loads, with evidence of major trends in terms of loading condition and cross-sectional layout. Traditional verification approaches for glass in cold conditions (i.e. stress peak check) and fire endurance of load-bearing members (i.e. deflection and deflection rate limits) are assessed based on parametric numerical simulations.

Design/methodology/approach

The mechanical performance of structural glass elements in fire still represents an open challenge for design and vulnerability assessment. Often, special fire-resisting glass solutions are used for limited practical applications only, and ordinary soda-lime silica glass prevails in design applications for load-bearing members. Moreover, conventional recommendations and testing protocols in use for load-bearing members composed of traditional constructional materials are not already addressed for glass members. This paper elaborates on the fire endurance and failure detection methods for structural glass beams that are subjected to standard ISO time–temperature for fire exposure and in-plane bending mechanical loads. Fire endurance assessment methods are discussed with the support of Finite Element (FE) numerical analyses.

Findings

Based on extended parametric FE analyses, multiple loading, geometrical and thermo-mechanical configurations are taken into account for the analysis of simple glass elements under in-plane bending setup and fire exposure. The comparative results show that – in most of cases – thermal effects due to fire exposure have major effects on the actual load-bearing capacity of these members. Moreover, the conventional stress peak verification approach needs specific elaborations, compared to traditional calculations carried out in cold conditions.

Originality/value

The presented numerical results confirm that the fire endurance analysis of ordinary structural glass elements is a rather complex issue, due to combination of multiple aspects and influencing parameters. Besides, FE simulations can provide useful support for a local and global analysis of major degradation and damage phenomena, and thus support the definition of simple and realistic verification procedures for fire exposed glass members.

Article
Publication date: 15 July 2022

Tulio Coelho, Sofia Diniz, Francisco Rodrigues and Ruben Van Coile

This paper aims to investigate the state of the art for the reliability evaluation of reinforced concrete beams in a fire situation. Special emphasis is placed on addressing which…

Abstract

Purpose

This paper aims to investigate the state of the art for the reliability evaluation of reinforced concrete beams in a fire situation. Special emphasis is placed on addressing which parameters were considered probabilistically or deterministically, the prescribed probabilistic models for the assumed stochastic variables, the treatment of the heat transfer mechanism, the quantification of the structural fire performance and the assumed target reliability levels.

Design/methodology/approach

Research papers were identified through a search on the Web of Science, Google Scholar and detailed searches within the journals Journal of Structural Fire Engineering, Fire Technology and Fire Safety Journal, supplemented with references known by the authors.

Findings

Considering the state-of-the-art review, gaps in the literature are identified related to (1) the probabilistic evaluation of shear capacity for standard fires and parametric fires, and bending capacity for parametric fires, (2) the absence of reference fragility curves for immediate design application/code calibration and (3) the specification of target safety levels for reliability-based design.

Originality/value

The lack of research papers gathering studies on the reliability of reinforced concrete beams in fire situation makes it difficult to further develop research in the area. The value of this work lies precisely in the collection of the basic information, making it possible to identify gaps to be addressed in future research and the suggestion of a research framework.

Details

Journal of Structural Fire Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 26 April 2023

S.N. Basavana Gowda, Subhash Yaragal, C. Rajasekaran and Sharan Kumar Goudar

In recent years, fire accidents in engineering structures have often been reported worldwide, leading to a severe risk to life and property safety. The present study is carried…

Abstract

Purpose

In recent years, fire accidents in engineering structures have often been reported worldwide, leading to a severe risk to life and property safety. The present study is carried out to evaluate the performance of Ground Granulated Blast Furnace Slag (GGBS) and fly ash–blended laterized mortars at elevated temperatures.

Design/methodology/approach

This test program includes the replacement of natural river sand with lateritic fine aggregates (lateritic FA) in terms of 0, 50 and 100%. Also, the ordinary Portland cement (OPC) was replaced with fly ash and GGBS in terms of 10, 20, 30% and 20, 40 and 60%, respectively, for producing blended mortars.

Findings

This paper presents results related to the determination of residual compressive strengths of lateritic fine aggregates-based cement mortars with part replacement of cement by fly ash and GGBS exposed to elevated temperatures. The effect of elevated temperatures on the physical and mechanical properties was evaluated with the help of microstructure studies and the quantification of hydration products.

Originality/value

A sustainable cement mortar was produced by replacing natural river sand with lateritic fine aggregates. The thermal strength deterioration features were assessed by exposing the control specimens and lateritic fine aggregates-based cement mortars to elevated temperatures. Changes in the mechanical properties were evaluated through a quantitative microstructure study using scanning electron microscopy (SEM) images. The phase change of hydration products after exposure to elevated temperatures was qualitatively analyzed by greyscale thresholding of SEM images using Image J software.

Details

Journal of Structural Fire Engineering, vol. 14 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 24 March 2023

Mahmoud Arayssi and Mohammad Jizi

This study aims to examine the role of royal family members’ board of directors, as a specific aspect of corporate governance, on the firm’s environmental, social and governance…

Abstract

Purpose

This study aims to examine the role of royal family members’ board of directors, as a specific aspect of corporate governance, on the firm’s environmental, social and governance (ESG) disclosures. Many firms in the world enjoy special political connections, benefit from tax exemptions and favorable treatments that are largely responsible for their economic endurance and strong performance.

Design/methodology/approach

The authors collect data from Thomson Reuters database on Gulf Cooperation Council (GCC)-listed firms for 2010–2018. Royal family board directors’ data is manually collected using a systematic approach to ensure accuracy. Fixed effects’ panel regression model is used to estimate relationships. The authors interact variables to test the moderating effect of board independence and sustainability committee on the influence of royal family board directors.

Findings

This study finds that royal family directors on GCC boards negotiate fewer ESG reporting in firms. While board independence, board gender diversity, sustainability committee and governance committee increase the level of ESG-disclosures in the traditional way of reducing agency costs to stakeholders, this study finds that royal family board members convey beneficial consequences on firms without perceiving the need to disclose their ESG activities. Additionally, these firms do not show a spillover effect from the royal family members on the board’s independence or the existence of a sustainability committee; rather these members use a different channel for protecting and building the business value. These results are robust with respect to controls for company size, leverage, return on assets and growth. Instrumental variables are then introduced in the analysis to perform a sensitivity test.

Originality/value

The study results indicate the need to improve GCC market transparency over supplementary limitations that exist on their corporate governance condition. This may be consequential to regulators, lenders and investors. The results suggest the need to raise awareness of the importance of governance and balancing firms’ financial and social performance in the presence of royal family board directors. Policymakers and governance agencies are responsible for promoting the importance of forming sustainability committees and having a set of performance indicators that measure the effectiveness of their actions.

Details

Journal of Accounting & Organizational Change, vol. 20 no. 1
Type: Research Article
ISSN: 1832-5912

Keywords

Article
Publication date: 6 March 2024

Xiaohui Li, Dongfang Fan, Yi Deng, Yu Lei and Owen Omalley

This study aims to offer a comprehensive exploration of the potential and challenges associated with sensor fusion-based virtual reality (VR) applications in the context of…

Abstract

Purpose

This study aims to offer a comprehensive exploration of the potential and challenges associated with sensor fusion-based virtual reality (VR) applications in the context of enhanced physical training. The main objective is to identify key advancements in sensor fusion technology, evaluate its application in VR systems and understand its impact on physical training.

Design/methodology/approach

The research initiates by providing context to the physical training environment in today’s technology-driven world, followed by an in-depth overview of VR. This overview includes a concise discussion on the advancements in sensor fusion technology and its application in VR systems for physical training. A systematic review of literature then follows, examining VR’s application in various facets of physical training: from exercise, skill development and technique enhancement to injury prevention, rehabilitation and psychological preparation.

Findings

Sensor fusion-based VR presents tangible advantages in the sphere of physical training, offering immersive experiences that could redefine traditional training methodologies. While the advantages are evident in domains such as exercise optimization, skill acquisition and mental preparation, challenges persist. The current research suggests there is a need for further studies to address these limitations to fully harness VR’s potential in physical training.

Originality/value

The integration of sensor fusion technology with VR in the domain of physical training remains a rapidly evolving field. Highlighting the advancements and challenges, this review makes a significant contribution by addressing gaps in knowledge and offering directions for future research.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 24 May 2023

Vijaya Prasad Burle, Tattukolla Kiran, N. Anand, Diana Andrushia and Khalifa Al-Jabri

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete…

Abstract

Purpose

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete (FGC) was developed with 8 and 10 molarities (M). At elevated temperatures, concrete experiences deterioration of its mechanical properties which is in some cases associated with spalling, leading to the building collapse.

Design/methodology/approach

In this study, six geopolymer-based mix proportions are prepared with crimped steel fibre (SF), polypropylene fibre (PF), basalt fibre (BF), a hybrid mixture consisting of (SF + PF), a hybrid mixture with (SF + BF), and a reference specimen (without fibres). After temperature exposure, ultrasonic pulse velocity, physical characteristics of damaged concrete, loss of compressive strength (CS), split tensile strength (TS), and flexural strength (FS) of concrete are assessed. A polynomial relationship is developed between residual strength properties of concrete, and it showed a good agreement.

Findings

The test results concluded that concrete with BF showed a lower loss in CS after 925 °C (i.e. 60 min of heating) temperature exposure. In the case of TS, and FS, the concrete with SF had lesser loss in strength. After 986 °C and 1029 °C exposure, concrete with the hybrid combination (SF + BF) showed lower strength deterioration in CS, TS, and FS as compared to concrete with PF and SF + PF. The rate of reduction in strength is similar to that of GC-BF in CS, GC-SF in TS and FS.

Originality/value

Performance evaluation under fire exposure is necessary for FGC. In this study, we provided the mechanical behaviour and physical properties of SF, PF, and BF-based geopolymer concrete exposed to high temperatures, which were evaluated according to ISO standards. In addition, micro-structural behaviour and linear polynomials are observed.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 11 April 2023

Muhammad Zahid Iqbal and Ayesha Shakoor

Using the broaden-and-build theory, this study aims to examine whether (1) employees have hateful emotional responses and think the overall performance review is fair at different…

Abstract

Purpose

Using the broaden-and-build theory, this study aims to examine whether (1) employees have hateful emotional responses and think the overall performance review is fair at different levels of managers’ emotional flexibility; and (2) the difference in employees’ hateful emotional responses mediates the relationship between managers’ emotional flexibility and employees’ perceptions of performance review fairness across flexibility conditions.

Design/methodology/approach

A sample of 110 Pakistani undergraduates participated in the seven waves of online scenario-based experimental research. For a one-way repeated-measures analysis, the general linear model was used, and for a two-condition within-subject mediational path analysis, the mediation and moderation analysis for repeated measures (MEMORE) was used.

Findings

Employees experience a high level of performance review justice and a low level of hateful emotional responses when managers are more emotionally flexible during the meeting, and vice versa. A manager’s emotional flexibility may also prevent employees from responding hatefully during performance reviews, which in turn makes them perceive the overall performance review as just.

Originality/value

The study expands on the thought–action repertoire and personal resources, supporting the broaden-and-build theory. The research applies this notion to performance reviews, which are an emotional experience for managers and employees. The study timely addresses organizations’ need for performance management system overhauls by suggesting managers to use emotional flexibility until an alternate performance review system is available.

Details

International Journal of Conflict Management, vol. 34 no. 4
Type: Research Article
ISSN: 1044-4068

Keywords

Article
Publication date: 24 October 2023

Feler Bose and Arkadiusz Mironko

This study aims to try and understand under what cultural conditions entrepreneurship will thrive and prosper, whether under shame or guilt cultures.

Abstract

Purpose

This study aims to try and understand under what cultural conditions entrepreneurship will thrive and prosper, whether under shame or guilt cultures.

Design/methodology/approach

The authors use basic game theory to model the conditions under which entrepreneurship will thrive. The authors anticipate that guilt cultures allow for the development of a rules-based culture that allows for the development of impersonal exchange, whereas shame cultures, which are relationship-oriented, focus on strong ties and hence lack the means to expand firms from small and medium family/clan-based businesses.

Findings

Empirical results are completed to see whether guilt-dominating cultures are more conducive to having larger firms and whether guilt-dominating cultures have less informality. The authors find support for the latter but lack the right data to test the former.

Originality/value

The authors use a new measure of culture to see how it impacts entrepreneurship.

Details

Journal of Entrepreneurship and Public Policy, vol. 12 no. 3/4
Type: Research Article
ISSN: 2045-2101

Keywords

Access

Year

Last 12 months (19)

Content type

Article (19)
1 – 10 of 19