Search results

1 – 10 of over 1000
Article
Publication date: 1 May 2019

Jenarthanan M.P., Karthikeyan Marappan and Giridharan R.

The need for seeking alternate materials with increased performance in the field of composites revived this research, to prepare and evaluate the mechanical properties of e-glass…

Abstract

Purpose

The need for seeking alternate materials with increased performance in the field of composites revived this research, to prepare and evaluate the mechanical properties of e-glass and aloe vera fiber-reinforced with polyester and epoxy resin matrices.

Design/methodology/approach

The composites are prepared by hand layup method using E-glass and aloe vera fibers with length 5-6 mm. The resin used in the preparation of composites was epoxy and polyester. Fiber-reinforced composites were synthesized at 18:82 fiber–resin weight percentages. Samples prepared were tested to evaluate its mechanical and physical properties, such as tensile strength, flexural strength, impact strength, hardness and scanning electron microscope (SEM).

Findings

SEM analysis revealed the morphological features. E-glass fiber-reinforced epoxy composite exhibited better mechanical properties than other composite samples. The cross-linking density of monomers of the epoxy resin and addition of the short chopped E-glass fibers enhanced the properties of E-glass epoxy fiber-reinforced composite.

Originality/value

This research work enlists the properties of e-glass and aloe vera fiber-reinforced with polyester and epoxy resin matrices which has not been attempted so far.

Details

Pigment & Resin Technology, vol. 48 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…

2620

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 August 2017

S. Brischetto

The purpose of this paper is to propose a comparative study between different structures composed of fiber-reinforced composite materials. Plates, cylinders and cylindrical and…

Abstract

Purpose

The purpose of this paper is to propose a comparative study between different structures composed of fiber-reinforced composite materials. Plates, cylinders and cylindrical and spherical shell panels in symmetric 0°/90°/0° and antisymmetric 0°/90°/0°/90° configurations are analyzed considering carbon fiber, glass fiber and linoleum fiber reinforcements.

Design/methodology/approach

A free vibration analysis is proposed for different materials, lamination sequences, vibration modes, half-wave numbers and thickness ratios. Such an analysis is conducted by means of an exact three-dimensional shell model which is valid for simply supported structures and cross-ply laminations. The employed model is based on a layer-wise approach and on three-dimensional shell equilibrium equations written in general orthogonal curvilinear coordinates.

Findings

The proposed study confirms the well-known superiority of the carbon fiber-reinforced composites. Linoleum fiber-reinforced composites prove to be comparable to glass fiber-reinforced composites in the case of free vibration analysis. Therefore, similar frequencies are obtained for all the geometries, thickness ratios, laminations sequences, vibration modes and a large spectrum of half-wave numbers. This partial conclusion needs further confirmations via static, buckling and fatigue analyses.

Originality/value

An exact three-dimensional shell model has been used to compare several geometries embedding carbon fiber composites and natural fiber composites.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 15 November 2011

Hui Wang and Qinghua Qin

The purpose of this paper is to present a new special element model for thermal analysis of composites.

Abstract

Purpose

The purpose of this paper is to present a new special element model for thermal analysis of composites.

Design/methodology/approach

A hybrid finite element formulation taking the fundamental solution as kernel function is presented in this work for analyzing the thermal behavior and predicting the effective thermal conductivity of fiber‐reinforced composites. A representative volume cell containing single or multiple fibers (or inclusions) is considered to investigate the overall temperature distribution affected by the inclusions and the interactions among them, and to evaluate the effective thermal conductivity of the composites using the presented algorithm with special‐purpose inclusion elements. Numerical examples are presented to demonstrate the accuracy and applicability of the proposed method in analyzing fiber‐reinforced composites.

Findings

The independent intra‐element field and frame field, as well as the newly‐developed hybrid functional, make the algorithm versatile in terms of element construction, with the result that the related variational functional involves the element boundary integral only. All numerical results are compared with the solutions from ABAQUS and good agreement is observed for all cases, clearly demonstrating the potential applications of the proposed approach to large‐scale modeling of fiber‐reinforced composites. The usage of special inclusion element can significantly reduce model meshing effort and computing cost, and simultaneously avoid mesh regeneration when the fiber volume fraction is changed.

Practical implications

Due to the fact that the established special elements exactly satisfy the interaction of matrix and fiber within the element, only element boundary integrals are involved, thus the algorithm can significantly reduce modeling effort and computing cost with less elements, and simultaneously avoid mesh regeneration when the fiber volume fraction is changed.

Originality/value

Based on the special fundamental solution, a newly‐constructed inclusion element is applied to a number of test problems involving unit RVCs with multiple fibers to access the accuracy of the model. The effective thermal conductivity of the composites is evaluated for cases of single and multiple fibers using the average temperatures at certain points on a data‐collection surface. A new algorithm for evaluating effective properties with special elements is presented.

Article
Publication date: 1 March 1991

Y.W. KWON

An analysis model has been developed for the elasto‐viscoplastic analysis of continuous fibre‐reinforced composite structures. Elastic deformation of fibre and elasto‐viscoplastic…

Abstract

An analysis model has been developed for the elasto‐viscoplastic analysis of continuous fibre‐reinforced composite structures. Elastic deformation of fibre and elasto‐viscoplastic deformation of matrix are considered in the analysis model because the yield strength of matrix is, in general, substantially lower than that of fibre. A finite element formulation is derived for the proposed analysis model. If matrix is assumed homogeneous and isotropic, the von Mises yield criterion is used for viscoplastic yielding. As numerical examples, a parametric study has been performed for elasto‐viscoplastic analysis of unidirectional composite plates subjected to inplane loads.

Details

Engineering Computations, vol. 8 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 April 2018

Rakesh Potluri

The purpose of this paper is to study the effect of the addition of silicon carbide (SiC) microparticles and their contributions regarding the tensile and shear properties of the…

Abstract

Purpose

The purpose of this paper is to study the effect of the addition of silicon carbide (SiC) microparticles and their contributions regarding the tensile and shear properties of the T800 fiber reinforced polymer composite at various fiber volume fractions. The tensile and shear properties of the hybrid composites where continuous T800 fibers are used as reinforcements in an epoxy matrix embedded with SiC microparticles have been studied.

Design/methodology/approach

The results were obtained by implementing a micromechanics approach assuming a uniform distribution of reinforcements and considering one unit cell from the whole array. Using the two-step homogenization process, the properties of the materials were determined by using the finite element analysis (FEA). The predicted elastic properties from FEA were compared with the analytical results. The analytical models were implemented in the MATLAB Software. The FEA was performed in ANSYS APDL.

Findings

The mechanical properties of the hybrid composite had increased when compared with the properties of the conventional FRP. The results suggest that SiC particles are a good reinforcement for enhancing the transverse and shear properties of the considered fiber reinforced epoxy composite. The microparticle embedment has significant effect on the transverse tensile properties as well as in-plane and out-of-plane shear properties.

Research limitations/implications

This is significant because improving the properties of the composite materials using different methods is of high interest in the materials community. Using this study people can work on the process of including different type of microparticles in to their composite designs and improve their performance characteristics. The major influence of the particles can be seen only at lower volume fractions of the fiber in the composite. Only FEA and analytical methods were used for the study.

Practical implications

Material property improvements lead to more advanced designs for aerospace and defense structures, which allow for high performance under unpredictable conditions.

Originality/value

This type of study proves that the embedment of different microparticles is a method that can be used for improving the properties of the composite materials. The improvement of the transverse and shear properties will be useful especially in the design of shell structures in the different engineering applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 October 2018

Salvatore Brischetto

The main idea is the comparison between composites including natural fibres (such as the linoleum fibres) and typical composites including carbon fibres or glass fibres. The…

Abstract

Purpose

The main idea is the comparison between composites including natural fibres (such as the linoleum fibres) and typical composites including carbon fibres or glass fibres. The comparison is proposed for different structures (plates, cylinders, cylindrical and spherical shells), lamination sequences (cross-ply laminates and sandwiches with composite skins) and thickness ratios. The purpose of this paper is to understand if linoleum fibres could be useful for some specific aerospace applications.

Design/methodology/approach

A general exact three-dimensional shell model is used for the static analysis of the proposed structures to obtain displacements and stresses through the thickness. The shell model is based on a layer-wise approach and the differential equations of equilibrium are solved by means of the exponential matrix method.

Findings

In qualitative terms, composites including linoleum fibres have a mechanical behaviour similar to composites including glass or carbon fibres. In terms of stress and displacement values, composites including linoleum fibres can be used in aerospace applications with limited loads. They are comparable with composites including glass fibres. In general, they are not competitive with respect to composites including carbon fibres. Such conclusions have been verified for different structure geometries, lamination sequences and thickness ratios.

Originality/value

The proposed general exact 3D shell model allows the analysis of different geometries (plates and shells), materials and laminations in a unified manner using the differential equilibrium equations written in general orthogonal curvilinear coordinates. These equations written for spherical shells degenerate in those for cylinders, cylindrical shell panels and plates by means of opportune considerations about the radii of curvature. The proposed shell model allows an exhaustive comparison between different laminated and sandwich composite structures considering the typical zigzag form of displacements and the correct imposition of compatibility conditions for displacements and equilibrium conditions for transverse stresses.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 August 2024

Pradeep Kumar Mishra and Jagadesh T.

This study aims to evaluate the low energy impact characteristics of 3D printed carbon fiber thermoplastic and thermoset polymer composite using the Izod impact test. The effects…

Abstract

Purpose

This study aims to evaluate the low energy impact characteristics of 3D printed carbon fiber thermoplastic and thermoset polymer composite using the Izod impact test. The effects of infill density are examined on the Izod impact properties of 3D printed thermoset polymer and thermoplastic composite specimens. Furthermore, a thorough investigation is conducted into the effect of heat treatment using a hot-air oven on both types of 3D printed composite specimens. To characterize the impact characteristics of each specimen, the fracture surfaces caused by impact load are inspected, and the fracture mechanism is studied using scanning electron micrographs.

Design/methodology/approach

Izod Impact specimens of thermoset (epoxy resin) and thermoplastic carbon fiber of different infill density (70, 75, 80, 85, 90 and 100%) are fabricated using the different fiber impregnation 3D printing process. To carry out the heat treatment process, printing of composites is done for each infill design from both thermoset and thermoplastic composites and the impact characteristics of specimens are evaluated on a pendulum test-rig using the ASTM D-256 standard. Using a scanning electron microscope, each fracture zone underwent four separate scanning processes, ranging in size from 2 µm to 100 µm.

Findings

The impact resistance of the 3D printed thermoset and thermoplastic composite material is significantly influenced by the type of fiber placement and infill density in the matrix substrate. Because of the weak interfacial strength between the layers of fiber and polyamide 6, the specimen printed with continuous fiber implanted at the part exhibited reduced impact resistance. At 75% infill density, the impact specimen printed with coextruded fiber showed the highest impact resistance with a 367.02% greater magnitude than the continuous fiber specimen with the same infill density.

Originality/value

This work presents a novel approach to analyze the low energy impact characteristics and three-dimensional printing of carbon fiber reinforced thermoplastic and carbon fiber reinforced thermoset and thermoplastic composite material.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 June 2016

Marko Bozic, Robert Fleischhauer and Michael Kaliske

The purpose of this paper is to investigate of interphasial effects, including temperature dependency, within fiber reinforced polymers on the overall composite behavior…

Abstract

Purpose

The purpose of this paper is to investigate of interphasial effects, including temperature dependency, within fiber reinforced polymers on the overall composite behavior. Providing theoretical and numerical approaches in terms of a consistent thermomechanical finite element method framework are further goals of this research.

Design/methodology/approach

Starting points for achieving the aims of this research are the partial differential equations describing the evolution of the displacements and temperature within a continuum mechanical setting. Based on the continuous formulation of a thermomechanical equilibrium, constitutive equations are derived, accounting for the modeling of fiber reinforced thermosets and thermoplastics, respectively. The numerical solutions of different initial boundary value problems are obtained by a consistent implementation of the proposed formulations into a finite element framework.

Findings

The successful theoretical formulation and numerical modeling of the thermoinelastic matrix materials as well as the thermomechanical treatment of the composite interphase (IP) are demonstrated for an epoxy/glass system. The influence of the IP on the overall composite behavior is successfully investigated and concluded as a further aspect.

Originality/value

A thermomechanical material model, suitable for finite thermoinelasticity of thermosets and thermoplastics is introduced and implemented into a novel kinematic framework in context of the inelastic deformation evolution. The gradually changing material properties between the matrix and the fiber of a composite are continuously formulated and numerically processed, in order to achieve an efficient and realistic approach to model fiber reinforced composites.

Article
Publication date: 12 June 2017

Saeed Bakhtiyari, Leila Taghi Akbari and Masoud Jamali Ashtiani

The purpose of this study is assessment of fire and smoke hazards of some fiber reinforced polymers (FRP). The use of FRP strengthening strips has been found rapid growth in…

Abstract

Purpose

The purpose of this study is assessment of fire and smoke hazards of some fiber reinforced polymers (FRP). The use of FRP strengthening strips has been found rapid growth in construction industry of Iran and many other countries. However, the fire and smoke hazards of these materials in both construction and use phases need to be determined and the appropriated measures against fire should be taken.

Design/methodology/approach

The fire hazards of two types of fibre-reinforced epoxy composites (graphite fibre-reinforced polymer and carbon fibre-reinforced polymer) were investigated in bench-scale using cone calorimeter test method. Time to ignition, heat release rate, total heat release, smoke release and carbon monoxide production were measured and analysed. Time to flashover of an assumed room lined with the tested FRP was analysed with Conetools software. Smoke production and toxicity of the considered composites were also analysed and discussed, using the fractional effective dose parameter.

Findings

The results showed that the tested FRP products had a high fire hazard and a potential high contribution to fire growth. The tests also proved that the used epoxy resin had a low glass transition temperature, around 50°C; therefore, the mechanical strength of the product could be drastically reduced at first stages of a probable fire incident. This also showed that a regular thermal barrier, typically used for protection of plastic foams against fire, could not be sufficient for the protection of strengthening FRP composites.

Originality/value

This research was carried out for the first time for the materials used in construction industry of Iran. The results and achievements were very useful for safe use and development of proper details of application of the system.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 8 no. 3
Type: Research Article
ISSN: 1759-5908

Keywords

1 – 10 of over 1000