Search results

1 – 10 of over 2000
Article
Publication date: 8 February 2016

Zhihong Du, Xinhua Ni, Xiequan Liu and Cheng Chen

According to the microstructural characteristics of composite ceramic, the strain field distribution regularity of triangular symmetrical composite eutectic is obtained from the…

Abstract

Purpose

According to the microstructural characteristics of composite ceramic, the strain field distribution regularity of triangular symmetrical composite eutectic is obtained from the stress field distribution regularity of three-phase element in composite ceramic. In allusion to the damage of composite eutectic, it is introduced as a variable in this paper with the aim to determine the strain field distribution regularity of triangular symmetrical composite eutectic with damage behavior.

Design/methodology/approach

On the basis of the relationship between strain field and fiber inclusions volume fraction, the strain field of composite eutectic is analyzed.

Findings

The strain field of composite ceramic is distinctly dependent on the fiber inclusions volume fraction, fiber diameter and damage behavior of composite eutectic by quantitative analysis. The strain in matrix parallel to eutectic is the maximum linear strain and the main factor for the damage and fracture of eutectics.

Originality/value

The foundation of the strength research of composite eutectic is laid.

Details

World Journal of Engineering, vol. 13 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 July 2016

Gurnoor Kaur Lubana, Baljot Kaur Randhawa, Vijay Kumar Reddy Surasani and Ajeet Singh

This study aims to develop fiber-enriched cutlets from minced meat of rohu and study the effects of fiber inclusion on composition, cooking properties and acceptability of cutlets.

Abstract

Purpose

This study aims to develop fiber-enriched cutlets from minced meat of rohu and study the effects of fiber inclusion on composition, cooking properties and acceptability of cutlets.

Design/methodology/approach

Cutlet mix prepared using rohu mince was divided into four lots, out of which three lots were enriched with fibers from ragi (RFC), jowar (JFC) and oat (OFC) at 10 per cent over and above its quantity. Prepared cutlets were analyzed for nutritional composition, texture, cooking properties and sensorial quality.

Findings

Moisture, protein, fat, fiber and ash contents (per cent) of the fiber-enriched cutlets ranged between 40.4-42.0, 24.5-25.5, 13.2-14.7, 1.8-2.0 and 2.4-2.5 per cent, respectively. The addition of fibers increased the cooking yield of cutlets from 84.6 to 87.5 per cent. RFC lot cutlets had the lowest whiteness values and the highest hardness and shear force values. Cutlets from all the lots had an overall acceptability scores more than 7.0, indicating the sensorial acceptability. Although the differences were insignificant, cutlets from the RFC lot were less acceptable, which might be because of the dark color and tough texture. Hence, jowar and oat flour at 10 per cent can be used to enrich rohu cutlets without affecting their sensorial acceptability.

Research limitations/implications

Sources of fiber will be the major limitation in the work, as the fiber inclusion may negatively affect the quality and acceptability of cutlets. Time of cooking will also influence the final product characteristics, which need to be standardized.

Practical implications

Fish is a rich source of protein but lacks fiber, which is essential for body metabolism. Grains are rich source of fibers but lack some essential nutrients required by the body. In India, many people are dependent on fish for protein due to its high nutritious value. So enriching fish meat with fiber sources will address the health-related problems associated with low-fiber diets. The methodology developed in this work can be used to fulfill the demand for balanced and nutritious diet. Because of increasing health awareness, fish products with added fiber will also increase its market potential.

Social implications

The methodology developed can be used by small-scale entrepreneurs to earn more income by developing functional fish products with low-cost ingredients. The developed products will not only address the issues related to the consumption of low-fiber diets but also create a market for fish products because of their health-benefiting effects.

Originality/value

The work is completely original in nature. The results reported are unique and the outcome of the research has social applicability.

Details

Nutrition & Food Science, vol. 46 no. 4
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 19 July 2024

Sevar Dilkhaz Neamat, James H. Haido and George Wardeh

This study aims to address sustainability challenges in construction by exploring the structural performance and environmental benefits of incorporating pozzolanic waste glass…

14

Abstract

Purpose

This study aims to address sustainability challenges in construction by exploring the structural performance and environmental benefits of incorporating pozzolanic waste glass (WG) into ultra-high-performance reinforced concrete (UHPRC) beams.

Design/methodology/approach

A comprehensive evaluation of UHPRC beams was conducted, incorporating varying ratios (10%, 20% and 30%) of WG powder alongside a consistent 0.75% inclusion of basalt fiber. The investigation encompassed the entire UHPRC production process, including curing, casting and molding, while evaluating workability and physical properties. Furthermore, the environmental impact, particularly CO2 emissions associated with UHPRC mixture components, was also assessed. Type K thermocouples were employed to analyze temperature dynamics during fabrication, providing valuable insights.

Findings

The findings demonstrate positive implications for using pozzolanic WG as a cement substitute in UHPRC beams.

Originality/value

This research stands out for its unique focus on the combined effects of incorporating recycled pozzolanic glass waste on the structural performance and environmental footprint of UHPRC beams.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 2 July 2020

Toqa AL-Kasasbeh and Rabab Allouzi

This research is part of a project that aims to investigate using foamed concrete structurally in houses. Foamed concrete has a porous structure that makes it light in weight…

Abstract

Purpose

This research is part of a project that aims to investigate using foamed concrete structurally in houses. Foamed concrete has a porous structure that makes it light in weight, good in thermal insulation, good in sound insulation and workable.

Design/methodology/approach

An experimental program is conducted in this research to investigate the behavior of polypropylene fiber reinforced foam concrete beams laterally reinforced with/without glass fiber grid.

Findings

The results proved the effectiveness and efficiency of using glass fiber grid as lateral reinforcements on the shear strength of reinforced foam concrete ribs, in reducing the cracks width and increasing its shear capacity, contrary to using glass fiber grid of reinforced foam concrete beams since glass fiber grid did not play good role in beams.

Originality/value

Limited literature is available regarding the structural use of foam concrete. However, work has been done in many countries concerning its use as insulation material, while limited work was done on structural type of foam concrete.

Details

International Journal of Structural Integrity, vol. 12 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 March 1986

C.G. March and S.R. Curwell

Our previous paper on this subject in Structural Survey (Vol 3 No 1) outlined the problems facing the surveyor in this difficult area. Clients may often expect (sometimes…

Abstract

Our previous paper on this subject in Structural Survey (Vol 3 No 1) outlined the problems facing the surveyor in this difficult area. Clients may often expect (sometimes implicitly) surveyors to identify hazardous materials as part of their normal survey procedure and subsequently to assist in the assessment of any hazard to the occupiers, with the selection of alternative materials, and advise upon the pros and cons of remedial or replacement work. While the paper identified the locations where hazardous materials may be expected in domestic buildings, many questions on the other issues remain unanswered.

Details

Structural Survey, vol. 4 no. 3
Type: Research Article
ISSN: 0263-080X

Article
Publication date: 5 March 2024

Maria Ghannoum, Joseph Assaad, Michel Daaboul and Abdulkader El-Mir

The use of waste polyethylene terephthalate (PET) plastics derived from shredded bottles in concrete is not formalized yet, especially in reinforced members such as beams and…

Abstract

Purpose

The use of waste polyethylene terephthalate (PET) plastics derived from shredded bottles in concrete is not formalized yet, especially in reinforced members such as beams and columns. The disposal of plastic wastes in concrete is a viable alternative to manage those wastes while minimizing the environmental impacts associated to recycling, carbon dioxide emissions and energy consumption.

Design/methodology/approach

This paper evaluates the suitability of 2D deterministic and stochastic finite element (FE) modeling to predict the shear strength behavior of reinforced concrete (RC) beams without stirrups. Different concrete mixtures prepared with 1.5%–4.5% PET additions, by volume, are investigated.

Findings

Test results showed that the deterministic and stochastic FE approaches are accurate to assess the maximum load of RC beams at failure and corresponding midspan deflection. However, the crack patterns observed experimentally during the different stages of loading can only be reproduced using the stochastic FE approach. This later method accounts for the concrete heterogeneity due to PET additions, allowing a statistical simulation of the effect of mechanical properties (i.e. compressive strength, tensile strength and Young’s modulus) on the output FE parameters.

Originality/value

Data presented in this paper can be of interest to civil and structural engineers, aiming to predict the failure mechanisms of RC beams containing plastic wastes, while minimizing the experimental time and resources needed to estimate the variability effect of concrete properties on the performance of such structures.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 19 July 2011

H.I. Park and Y.T. Kim

Reinforced lightweight soil (RLS) consisting of dredged soil, cement, air‐foam, and waste fishing net is considered to be an eco‐friendly backfilling material because it provides…

1252

Abstract

Purpose

Reinforced lightweight soil (RLS) consisting of dredged soil, cement, air‐foam, and waste fishing net is considered to be an eco‐friendly backfilling material because it provides a means to recycle both dredged soil and waste fishing net. It may be difficult to find an optimum mixing ratio of RLS considering the design criteria and the construction's situation using the limited test results because the unconfined compressive strength is complicatedly influenced by various mixing ratios of admixtures. As a result, in order to expedite the field application of RLS, an appropriate prediction method is needed. The paper aims to address these issues.

Design/methodology/approach

In this study, an artificial neural network (ANN) model that was based on experimental test results performed on various mixing ratios, was developed to predict the unconfined compressive strength of RLS.

Findings

It was found that the unconfined compressive strength of RLS at a given mixing ratio could be reasonably estimated using the developed neural network model. In addition, sensitivity analysis was also conducted to evaluate the effect of mixing conditions on the compressive strength of RLS.

Practical implications

RLS is considered to be environmentally friendly because it provides a means to recycle both dredged soil and waste fishing net. The contractors could use the proposed ANN model as an alternative method to predict the strength of RLS with a specific mixing ratio.

Originality/value

This paper reveals that the developed ANN model can be served as a simple and reliable predictive tool for the strength of RLS without excessive laboratory tests for various admixture contents. An optimum admixture ratio of composed materials to get a designed strength could be easily found by using the proposed ANN model.

Details

Engineering Computations, vol. 28 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 November 2011

Hui Wang and Qinghua Qin

The purpose of this paper is to present a new special element model for thermal analysis of composites.

Abstract

Purpose

The purpose of this paper is to present a new special element model for thermal analysis of composites.

Design/methodology/approach

A hybrid finite element formulation taking the fundamental solution as kernel function is presented in this work for analyzing the thermal behavior and predicting the effective thermal conductivity of fiber‐reinforced composites. A representative volume cell containing single or multiple fibers (or inclusions) is considered to investigate the overall temperature distribution affected by the inclusions and the interactions among them, and to evaluate the effective thermal conductivity of the composites using the presented algorithm with special‐purpose inclusion elements. Numerical examples are presented to demonstrate the accuracy and applicability of the proposed method in analyzing fiber‐reinforced composites.

Findings

The independent intra‐element field and frame field, as well as the newly‐developed hybrid functional, make the algorithm versatile in terms of element construction, with the result that the related variational functional involves the element boundary integral only. All numerical results are compared with the solutions from ABAQUS and good agreement is observed for all cases, clearly demonstrating the potential applications of the proposed approach to large‐scale modeling of fiber‐reinforced composites. The usage of special inclusion element can significantly reduce model meshing effort and computing cost, and simultaneously avoid mesh regeneration when the fiber volume fraction is changed.

Practical implications

Due to the fact that the established special elements exactly satisfy the interaction of matrix and fiber within the element, only element boundary integrals are involved, thus the algorithm can significantly reduce modeling effort and computing cost with less elements, and simultaneously avoid mesh regeneration when the fiber volume fraction is changed.

Originality/value

Based on the special fundamental solution, a newly‐constructed inclusion element is applied to a number of test problems involving unit RVCs with multiple fibers to access the accuracy of the model. The effective thermal conductivity of the composites is evaluated for cases of single and multiple fibers using the average temperatures at certain points on a data‐collection surface. A new algorithm for evaluating effective properties with special elements is presented.

Article
Publication date: 10 April 2018

Rakesh Potluri

The purpose of this paper is to study the effect of the addition of silicon carbide (SiC) microparticles and their contributions regarding the tensile and shear properties of the…

Abstract

Purpose

The purpose of this paper is to study the effect of the addition of silicon carbide (SiC) microparticles and their contributions regarding the tensile and shear properties of the T800 fiber reinforced polymer composite at various fiber volume fractions. The tensile and shear properties of the hybrid composites where continuous T800 fibers are used as reinforcements in an epoxy matrix embedded with SiC microparticles have been studied.

Design/methodology/approach

The results were obtained by implementing a micromechanics approach assuming a uniform distribution of reinforcements and considering one unit cell from the whole array. Using the two-step homogenization process, the properties of the materials were determined by using the finite element analysis (FEA). The predicted elastic properties from FEA were compared with the analytical results. The analytical models were implemented in the MATLAB Software. The FEA was performed in ANSYS APDL.

Findings

The mechanical properties of the hybrid composite had increased when compared with the properties of the conventional FRP. The results suggest that SiC particles are a good reinforcement for enhancing the transverse and shear properties of the considered fiber reinforced epoxy composite. The microparticle embedment has significant effect on the transverse tensile properties as well as in-plane and out-of-plane shear properties.

Research limitations/implications

This is significant because improving the properties of the composite materials using different methods is of high interest in the materials community. Using this study people can work on the process of including different type of microparticles in to their composite designs and improve their performance characteristics. The major influence of the particles can be seen only at lower volume fractions of the fiber in the composite. Only FEA and analytical methods were used for the study.

Practical implications

Material property improvements lead to more advanced designs for aerospace and defense structures, which allow for high performance under unpredictable conditions.

Originality/value

This type of study proves that the embedment of different microparticles is a method that can be used for improving the properties of the composite materials. The improvement of the transverse and shear properties will be useful especially in the design of shell structures in the different engineering applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 March 2006

Alan E. Richardson

Conflicting claims have been made in relation to the effects of polypropylene fibres on the compressive strength of concrete. The purpose of this paper is to examine the effects…

2452

Abstract

Purpose

Conflicting claims have been made in relation to the effects of polypropylene fibres on the compressive strength of concrete. The purpose of this paper is to examine the effects on compressive strength of various dosages of monofilament polypropylene fibres when used in concrete. Compressive strength is widely used as the key indicator of concrete quality and therefore needs accurate determination. Monofilament fibres and air entrainment provide a similar function in that they provide freeze/thaw protection, they are both compared against a plain concrete sample to determine relative strength and density.

Design/methodology/approach

Two different concrete design strengths (medium and high) were examined with varying amounts and types of polypropylene fibre fraction/volume to establish a common link between fibre additions and reduced final compressive strength.

Findings

The findings from the test programme showed a linear reduction in strength which was observed as being directly related to fibre inclusion in concrete. Density was also found to be reduced with the addition of fibres in a similar degree to that of air entrainment.

Research limitations/implications

The lower density of concrete with polypropylene fibre additions was not scientifically explained and this aspect currently forms part of a long term freeze/thaw research programme, which will examine pore spacing and void formation compared to plain concrete.

Originality/value

This paper is of interest to clients, concrete manufacturers, concrete additive manufacturers, designers, surveyors and specifiers who need to know what effect polypropylene fibre additives have upon the final compressive strength.

Details

Structural Survey, vol. 24 no. 2
Type: Research Article
ISSN: 0263-080X

Keywords

1 – 10 of over 2000