Search results

1 – 10 of over 28000
Article
Publication date: 4 November 2014

ShiYang Zhao and Pu Xue

– The purpose of the paper is to improve the calculability of a continuum damage failure model of composite laminates based on Tsai-Wu criteria.

Abstract

Purpose

The purpose of the paper is to improve the calculability of a continuum damage failure model of composite laminates based on Tsai-Wu criteria.

Design/methodology/approach

A technique based on viscous regularization, a characteristic element length and fracture energies of fiber and matrix are used in the model.

Findings

The calculability of the material model is improved. The modified model can predict the behavior of composite structure better.

Originality/value

The convergence problem and the mesh softening problem are main concern in the calculability of numerical model. In order to improve the convergence, a technique based on viscous regularization of damage variable is used. Meanwhile, characteristic element length and fracture energies of fiber and matrix are added into the damage constitutive equation to reduce the mesh sensitivity of numerical results. Finally, a laminated structure with damages is implemented using a User Material Subroutine in ABAQUS/Standard. Mesh sensitivity and value of viscosity are discussed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Content available
Article
Publication date: 21 December 2021

Russ D. Kashian, Tracy Buchman and Robert Drago

The study aims to analyze the roles of poverty and African American status in terms of vulnerability to tornado damages and barriers to recovery afterward.

Abstract

Purpose

The study aims to analyze the roles of poverty and African American status in terms of vulnerability to tornado damages and barriers to recovery afterward.

Design/methodology/approach

Using five decades of county-level data on tornadoes, the authors test whether economic damages from tornadoes are correlated with vulnerability (proxied by poverty and African American status) and wealth (proxied by median income and educational attainment), controlling for tornado risk. A multinomial logistic difference-in-difference (DID) estimator is used to analyze long-run effects of tornadoes in terms of displacement (reduced proportions of the poor and African Americans), abandonment (increased proportions of those groups) and neither or both.

Findings

Controlling for tornado risk, poverty and African American status are linked to greater tornado damages, as is wealth. Absent tornadoes, displacement and abandonment are both more likely to occur in urban settings and communities with high levels of vulnerability, while abandonment is more likely to occur in wealthy communities, consistent with on-going forces of segregation. Tornado damages significantly increase abandonment in vulnerable communities, thereby increasing the prevalence of poor African Americans in those communities. Therefore, the authors conclude that tornadoes contribute to on-going processes generating inequality by poverty/race.

Originality/value

The current paper is the first study connecting tornado damages to race and poverty. It is also the first study finding that tornadoes contribute to long-term processes of segregation and inequality.

Details

Journal of Economic Studies, vol. 49 no. 7
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 8 February 2016

Zhihong Du, Xinhua Ni, Xiequan Liu and Cheng Chen

According to the microstructural characteristics of composite ceramic, the strain field distribution regularity of triangular symmetrical composite eutectic is obtained from the…

Abstract

Purpose

According to the microstructural characteristics of composite ceramic, the strain field distribution regularity of triangular symmetrical composite eutectic is obtained from the stress field distribution regularity of three-phase element in composite ceramic. In allusion to the damage of composite eutectic, it is introduced as a variable in this paper with the aim to determine the strain field distribution regularity of triangular symmetrical composite eutectic with damage behavior.

Design/methodology/approach

On the basis of the relationship between strain field and fiber inclusions volume fraction, the strain field of composite eutectic is analyzed.

Findings

The strain field of composite ceramic is distinctly dependent on the fiber inclusions volume fraction, fiber diameter and damage behavior of composite eutectic by quantitative analysis. The strain in matrix parallel to eutectic is the maximum linear strain and the main factor for the damage and fracture of eutectics.

Originality/value

The foundation of the strength research of composite eutectic is laid.

Details

World Journal of Engineering, vol. 13 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 November 2010

F.J.P. Reis, L. Malcher, F.M. Andrade Pires and J.M.A. César de Sá

The purpose of this paper is to perform a numerical assessment of two recently proposed extensions of the Gurson‐Tveegard‐Needleman ductile damage constitutive model under low…

Abstract

Purpose

The purpose of this paper is to perform a numerical assessment of two recently proposed extensions of the Gurson‐Tveegard‐Needleman ductile damage constitutive model under low stress triaxiality.

Design/methodology/approach

One of the most widely used ductile damage models is the so‐called Gurson‐Tveegard‐Needleman model, commonly known as GTN model. The GTN model has embedded into its damage formulation the effects of nucleation, growth and coalescence of micro‐voids. However, the GTN model does not include void distortion and inter‐void linking in the damage evolution. To overcome this limitation, some authors have proposed the introduction of different shear mechanisms based on micromechanical grounds or phenomenological assumptions. Two of these constitutive formulations are reviewed in this contribution, numerically implemented within a quasi‐static finite element framework and their results critically appraised.

Findings

Through the analysis of the evolution of internal variables, such as damage and effective plastic strain, obtained by performing a set of numerical tests using a Butterfly specimen, it is possible to conclude that the extended GTN models are in close agreement with experimental evidence.

Research limitations/implications

Even though the results obtained with the modified GTN models have shown improvements, it can also be observed that both shear mechanisms have inherent limitations in the prediction of the location of fracture onset for some specific stress states.

Originality/value

From the results reported, it is possible to identify some shortcomings in the recently proposed extensions of the GTN model and point out the direction of further improvements.

Details

International Journal of Structural Integrity, vol. 1 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 April 2020

Dragan D. Milašinović, Petar Marić, Žarko Živanov and Miroslav Hajduković

The problems of inelastic instability (buckling) and dynamic instability (resonance) have been the subject of extensive investigation and have received wide attention from the…

Abstract

Purpose

The problems of inelastic instability (buckling) and dynamic instability (resonance) have been the subject of extensive investigation and have received wide attention from the structural mechanics community. This paper aims to tackle these problems in thin-walled structures, taking into account geometrical and/or material non-linearity.

Design/methodology/approach

The inelastic buckling mode interactions and resonance instabilities of prismatic thin-walled columns are analysed by implementing the semi-analytical finite strip method (FSM). A scalar damage parameter is implemented in conjunction with a material modelling named rheological-dynamical analogy to address stiffness reduction induced by the fatigue damage.

Findings

Inelastic buckling stresses lag behind the elastic buckling stresses across all modes, which is a consequence of the viscoelastic behaviour of materials. Because of the lag, the same column length does not always correspond to the same mode at the elastic and inelastic critical stress.

Originality/value

This paper presents the influence of mode interactions on the effective stresses and resonance instabilities in thin-walled columns due to the fatigue damage. These mode interactions have a great influence on damage variables because of the fatigue and effective stresses around mode transitions. In its usual semi-analytical form, the FSM cannot be used to solve the mode interaction problem explained in this paper, because this technique ignores the important influence of interaction of the buckling modes when applied only for undamaged state of structure

Article
Publication date: 8 September 2023

Xintian Liu and Muzhou Ma

Scholars mainly propose and establish theoretical models of cumulative fatigue damage for their research fields. This review aims to select the applicable model from many fatigue…

Abstract

Purpose

Scholars mainly propose and establish theoretical models of cumulative fatigue damage for their research fields. This review aims to select the applicable model from many fatigue damage models according to the actual situation. However, relatively few models can be generally accepted and widely used.

Design/methodology/approach

This review introduces the development of cumulative damage theory. Then, several typical models are selected from linear and nonlinear cumulative damage models to perform data analyses and obtain the fatigue life for the metal.

Findings

Considering the energy law and strength degradation, the nonlinear fatigue cumulative damage model can better reflect the fatigue damage under constant and multi-stage variable amplitude loading. In the following research, the complex uncertainty of the model in the fatigue damage process can be considered, as well as the combination of advanced machine learning techniques to reduce the prediction error.

Originality/value

This review compares the advantages and disadvantages of various mainstream cumulative damage research methods. It provides a reference for further research into the theories of cumulative fatigue damage.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 March 1994

E.A. De Souza Neto, Djordje Perić and D.R.J. Owen

This work addresses the computational aspects of a model forelastoplastic damage at finite strains. The model is a modification of apreviously established model for large strain…

Abstract

This work addresses the computational aspects of a model for elastoplastic damage at finite strains. The model is a modification of a previously established model for large strain elastoplasticity described by Perić et al. which is here extended to include isotropic damage and kinematic hardening. Within the computational scheme, the constitutive equations are numerically integrated by an algorithm based on operator split methodology (elastic predictor—plastic corrector). The Newton—Raphson method is used to solve the discretized evolution equations in the plastic corrector stage. A numerical assessment of accuracy and stability of the integration algorithm is carried out based on iso‐error maps. To improve the stability of the local N—R scheme, the standard elastic predictor is replaced by improvedinitial estimates ensuring convergence for large increments. Several possibilities are explored and their effect on the stability of the N—R scheme is investigated. The finite element method is used in the approximation of the incremental equilibrium problem and the resulting equations are solved by the standard Newton—Raphson procedure. Two numerical examples are presented. The results are compared with those obtained by the original elastoplastic model.

Details

Engineering Computations, vol. 11 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 October 2023

Dragan D. Milašinović

The purpose of this paper is to describe various aspects of the visco-elastoplastic (VEP) behavior of porous-hardened concrete samples in relation to standard tests.

Abstract

Purpose

The purpose of this paper is to describe various aspects of the visco-elastoplastic (VEP) behavior of porous-hardened concrete samples in relation to standard tests.

Design/methodology/approach

The problem is formulated on the basis of the rheological-dynamic analogy (RDA). In this study, changes in creep coefficient, Poisson's ratio, damage variables, modulus of elasticity, strength and angle of internal friction as a function of porosity are defined by P and S wave velocities. The RDA model provides a description of the degradation process of material properties from their peak state to their ultimate values using void volume fraction (VVF).

Findings

Compared to numerous versions of acoustic emission tracking developed to analyze the behavior of total wave propagation in inhomogeneous media with density variations, the proposed model is comprehensive in interpretation and consistent with physical understanding. The comparison of the damage variables with the theoretical variables under the assumption of spherical voids in the spherical representative volume element (RVE) shows a satisfactory agreement of the results for all analyzed samples if the maximum porosities are used for comparison.

Originality/value

The paper presents a new mathematical-physical method for examining the effect of porosity on the characteristics of hardened concrete. Porosity is essentially related to density variations. Therefore, it was logical to define the limit values of porosity using the strain energy density.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 April 2020

Annan Jiang, Shuai Zheng and Shanyong Wang

This paper aims at the problem of surrounding rock excavation damage zone of tunneling in the rich water region, this paper aims to propose a new seepage-stress-damage coupling…

Abstract

Purpose

This paper aims at the problem of surrounding rock excavation damage zone of tunneling in the rich water region, this paper aims to propose a new seepage-stress-damage coupling model and studied the numerical algorithm. This reflects the characteristics of rock damage evolution, accompanied by plastic flow deformation and multi-field interaction.

Design/methodology/approach

First of all, rock elastoplastic damage constitutive model based on the Drucker–Prager criterion is established, the fully implicit return mapping algorithm is adopted to realize the numerical solution. Second, based on the relation between damage variation and permeability coefficient, the rock stress-seepage-damage model and multi-field coupling solving iterative method are presented. Finally, using the C++ language compiled the corresponding programs and simulated tunnel engineering in the rich water region.

Findings

Results show that difference evolution-based back analysis inversed damage parameters well, at the same time the established coupling model and calculating program have more advantages than general conventional methods. Multiple field coupling effects should be more considered for the design of tunnel support.

Originality/value

The proposed method provides an effective numerical simulation method for the construction of the tunnel and other geotechnical engineering involved underground water problems.

Details

Engineering Computations, vol. 37 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 2014

John M. Thornton and Michael K. Shaub

The purpose of this research is to determine whether the type of tax services provided by a public accounting firm to its audit client and the consequence severity of an audit…

1329

Abstract

Purpose

The purpose of this research is to determine whether the type of tax services provided by a public accounting firm to its audit client and the consequence severity of an audit failure impact jurors' assessment of audit quality and auditor liability.

Design/methodology/approach

The authors administer a court case to 168 jurors manipulating three levels of tax services provided to an audit client (none, tax preparation, and aggressive tax planning services); two levels of consequence severity of the alleged audit failure, observing the impact on jurors' assessment of audit quality, auditor responsibility for audit failure; and damages awarded the plaintiff.

Findings

Consistent with recent US regulations, jurors perceive the quality of the audit to be lower when auditors provide aggressive tax planning services, but not for tax preparation services. Damages are greater when auditors provide aggressive tax planning services across both levels of consequence severity.

Research limitations/implications

The results indicate that the type of tax services provided may impact jurors' views of audit quality and damage assessments against auditors. The questionnaire uses previously validated measures, but the results may not be generalizable to jurors in all jurisdictions.

Practical implications

Though empirical evidence is mixed at best about the impact of auditors providing non-audit services on auditor independence in fact, auditor independence in appearance, and thus audit quality, such impacts may affect the way jurors perceive the situation.

Originality/value

The study directly tests the implications for auditor liability of new restrictions on tax services and more accurately measures the impact of consequence severity, using actual jurors.

Details

Managerial Auditing Journal, vol. 29 no. 1
Type: Research Article
ISSN: 0268-6902

Keywords

1 – 10 of over 28000