Search results

1 – 10 of 31
Article
Publication date: 9 January 2024

Yunfei Zou

This study aims to enhance the understanding of fiber-reinforced polymer (FRP) applications in partially confined concrete, with a specific focus on improving economic value and…

Abstract

Purpose

This study aims to enhance the understanding of fiber-reinforced polymer (FRP) applications in partially confined concrete, with a specific focus on improving economic value and load-bearing capacity. The research addresses the need for a more comprehensive analysis of non-uniform vertical strain responses and precise stress–strain models for FRP partially confined concrete.

Design/methodology/approach

DIC and strain gauges were employed to gather data during axial compression tests on FRP partially confined concrete specimens. Finite element analysis using ABAQUS was utilized to model partial confinement concrete with various constraint area ratios, ranging from 0 to 1. Experimental findings and simulation results were compared to refine and validate the stress–strain model.

Findings

The experimental results revealed that specimens exhibited strain responses characterized by either hardening or softening in both vertical and horizontal directions. The finite element analysis accurately reflected the relationship between surface constraint forces and axial strains in the x, y and z axes under different constraint area ratios. A proposed stress–strain model demonstrated high predictive accuracy for FRP partially confined concrete columns.

Practical implications

The stress–strain curves of partially confined concrete, based on Teng's foundation model for fully confined stress–strain behavior, exhibit a high level of predictive accuracy. These findings enhance the understanding of the mechanical behavior of partially confined concrete specimens, which is crucial for designing and assessing FRP confined concrete structures.

Originality/value

This research introduces innovative insights into the superior convenience and efficiency of partial wrapping strategies in the rehabilitation of beam-column joints, surpassing traditional full confinement methods. The study contributes methodological innovation by refining stress–strain models specifically for partially confined concrete, addressing the limitations of existing models. The combination of experimental and simulated assessments using DIC and FEM technologies provides robust empirical evidence, advancing the understanding and optimization of FRP-concrete structure performance. This work holds significance for the broader field of concrete structure reinforcement.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 27 September 2022

Chafika Ali Ahmed, Abdelmadjid Si Salem, Souad Ait Taleb and Kamal Ait Tahar

This paper aims to investigate the experimental behavior and the reliability of concrete columns repaired using fiber-reinforced polymers (FRPs) under axial compression loading…

Abstract

Purpose

This paper aims to investigate the experimental behavior and the reliability of concrete columns repaired using fiber-reinforced polymers (FRPs) under axial compression loading. The expression of the ultimate axial resistance was assessed from the experimental data of damaged concrete cylinders repaired by externally bonded double-FRP spiral strips.

Design/methodology/approach

The tested columns bearing capacity mainly depends of the elasticity modulus of both damaged and undamaged concrete have been considered in addition to the applied load and the cylinder diameter as random variables in the expression of the failure criterion. The reliability indicators were assessed using first order second moment method.

Findings

The emphasized test results, statistically fitted show that the strength has been retrofitted for all repaired specimens whatever the degree of initial damage. However, the gain in axial strength is inversely proportional to the degree of damage.

Originality/value

The efficiency of a new FRP repair procedure using double-spiral strips was studied. This research provides a technical and economical solution for retrofitting existing concrete columns. Finally, the random character of the variables that govern the studied system shows the accuracy and safety of the proposed original design.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 January 2024

Bashir H. Osman

Recently, the repairing of reinforced concrete (RC) structures attracted great research attentions, but the research interests were mainly concentrated on common repairing types…

Abstract

Purpose

Recently, the repairing of reinforced concrete (RC) structures attracted great research attentions, but the research interests were mainly concentrated on common repairing types. To this end, in this paper, a repairing of pre-loaded RC beams strengthened by aramid reinforcement polymers (AFRP) is presented. Furthermore, the purpose of this paper is to study the behavior of pre-loaded RC Deep beams under sustained load. The AFRP has many advantages such as controlling stresses distribution around the openings, controlling failure modes, and enhancing the structural capacity of pre-cracked RC beams.

Design/methodology/approach

Four specimens were experimentally tested: one specimen without strengthening, which is considered as control specimen, one strengthened specimen using AFRP without pre-cracking and two specimens subjected to pre-cracking load before prior to AFRP application. Furthermore, after validation of experimental data by using ANSYS software, a parametric study was conducted to investigate the effect of pre-damage level on shear capacity of RC beams. For pre-cracked beams, loading was first applied until the cracking stage, followed by specimen repairing with epoxy injection, and then the specimens were loaded again until failure point.

Findings

The result showed that pre-damage level and AFRP strengthening have great influence on the ultimate strength and failure mode. In addition, the results obtained from experimental tests were compared with those from numerical validation with ANSYS and showed good agreement.

Originality/value

Based on ACI guidelines, an analytical equation for calculating the shear strength of strengthened RC beams with openings subjected to pre-damage was then proposed, and the calculated results were compared with those from the tests, with differences not exceeding 10%.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 January 2024

Ahmed Ashteyat, Ala Taleb Obaidat, Yasmeen Taleb Obeidat and Ahmad Bani Awwad

The paper aims to introduces an experimental work to investigate the torsional behavior of reinforced concrete (RC) beams strengthened by near-surface mounted (NSM) carbon…

22

Abstract

Purpose

The paper aims to introduces an experimental work to investigate the torsional behavior of reinforced concrete (RC) beams strengthened by near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) ropes.

Design/methodology/approach

In this research, nine rectangular RC beams of 250 mm × 300 mm cross-section and 1,600 mm in length were constructed and tested considering the studied parameters. These parameters include the length of the CFRP rope, the orientation of the CFRP rope, the arrangement of longitudinal and the scheme of NSM-CFRP ropes.

Findings

In comparison to control specimens, the results demonstrate a considerable improvement in the torsional response of RC beams strengthened with the CFRP rope. Additionally, specimens strengthened with 90° vertical ropes increase torsional moment capacity more efficiently than specimens strengthened with 45° inclined ropes since the stress concentration leads to premature debonding of the CFRP rope. Whereas RC beams' ability to withstand torsional moments is reduced as the distance between reinforcing CFRP ropes is increased. According to test results, adding CFRP ropes to RC beams' bottoms had a slightly positive impact on torsional response.

Originality/value

This paper fulfills an identified need to study how the using of the CFRP rope is effective in strengthening RC beam subjected to torsion moment.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 20 December 2023

Akash Gupta and Manjeet Singh

This study aims to evaluate the failure behavior of glass fiber-reinforced epoxy (GFRE) laminate subjected to cyclic loading conditions. It involves experimental investigation and…

29

Abstract

Purpose

This study aims to evaluate the failure behavior of glass fiber-reinforced epoxy (GFRE) laminate subjected to cyclic loading conditions. It involves experimental investigation and statistical analysis using Weibull distribution to characterize the failure behavior of the GFRE composite laminate.

Design/methodology/approach

Fatigue tests were conducted using a tension–tension loading scheme at a frequency of 2 Hz and a loading ratio (R) of 0.1. The tests were performed at five different stress levels, corresponding to 50%–90% of the ultimate tensile strength (UTS). Failure behavior was assessed through cyclic stress-strain hysteresis plots, dynamic modulus behavior and scanning electron microscopy (SEM) analysis of fracture surfaces.

Findings

The study identified common modes of failure, including fiber pullouts, fiber breakage and matrix cracking. At low stress levels, fiber breakage, matrix cracking and fiber pullouts occurred due to high shear stresses at the fiber–matrix interface. Conversely, at high stress levels, fiber breakage and matrix cracking predominated. Higher stress levels led to larger stress-strain hysteresis loops, indicating increased energy dissipation during cyclic loading. High stress levels were associated with a more significant decrease in stiffness over time, implying a shorter fatigue life, while lower stress levels resulted in a gradual decline in stiffness, leading to extended fatigue life.

Originality/value

This study makes a valuable contribution to understanding fatigue behavior under tension–tension loading conditions, coupled with an in-depth analysis of the failure mechanism in GFRE composite laminate at different stress levels. The fatigue behavior is scrutinized through stress-strain hysteresis plots and dynamic modulus versus normalized cycles plots. Furthermore, the characterization of the failure mechanism is enhanced by using SEM imaging of fractured specimens. The Weibull distribution approach is used to obtain a reliable estimate of fatigue life.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 November 2022

Nursyamsi Nursyamsi, Johannes Tarigan, Muhammad Aswin, Badorul Hisham Abu Bakar and Harianto Hardjasaputra

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading…

Abstract

Purpose

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading, inadequate design, poor work execution, fire, storm, earthquakes etc. Therefore, repairing and strengthening is one way to improve damaged structures, so that they can be reutilized. In this research, the use of an ultra high-performance fibre-reinforced concrete (UHPFRC) layer is proposed as a strengthening material to rehabilitate damaged-RC beams. Different strengthening schemes pertaining to the structural performance of the retrofitted RC beams due to the flexural load were investigated.

Design/methodology/approach

A total of 13 normal RC beams were prepared. All the beams were subjected to a four-point flexural test. One beam was selected as the control beam and tested to failure, whereas the remaining beams were tested under a load of up to 50% of the ultimate load capacity of the control beam. The damaged beams were then strengthened using a UHPFRC layer with two different schemes; strip-shape and U-shape schemes, before all the beams were tested to failure.

Findings

Based on the test results, the control beam and all strengthened beams failed in the flexural mode. Compared to the control beam, the damaged-RC beams strengthened using the strip-shape scheme provided an increase in the ultimate load capacity ranging from 14.50% to 43.48% (or an increase of 1.1450 to 1.4348 times), whereas for the U-shape scheme beams ranged from 48.70% to 149.37% (or an increase of 1.4870–2.4937 times). The U-shape scheme was more effective in rehabilitating the damaged-RC beams. The UHPFRC mixtures are workable, as well easy to place and cast into the formworks. Furthermore, the damaged-RC beams strengthened using strip-shape scheme and U-shape scheme generated ductility factors of greater than 4 and 3, respectively. According to Eurocode8, these values are suitable for seismically active regions. Therefore, the strengthened damaged-RC beams under this study can quite feasibly be used in such regions.

Research limitations/implications

Observations of crack patterns were not accompanied by measurements of crack widths due to the unavailability of a microcrack meter in the laboratory. The cost of the strengthening system application were not evaluated in this study, so the users should consider wisely related to the application of this method on the constructions.

Practical implications

Rehabilitation of the damaged-RC beams exhibited an adequate structural performance, where all strengthened RC beams fail in the flexural mode, as well as having increment in the failure load capacity and ductility. So, the used strengthening system in this study can be applied for the building construction in the seismic regions.

Social implications

Aside from equipment, application of this strengthening system need also the labours.

Originality/value

The use of sand blasting on the surfaces of the damaged-RC beams, as well as the application of UHPFRC layers of different thicknesses and shapes to strengthen the damaged-RC beams, provides a novel innovation in the strengthening of damaged-RC beams, which can be applicable to either bridge or building constructions.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 11 October 2023

Megavannan Mani, Thiyagu Murgaiyan and Pradeep Kumar Krishnan

This study focuses on the structural performance assessment of hybrid polymer composites for pick-and-place robot grippers used in critical infrastructure. This research involved…

Abstract

Purpose

This study focuses on the structural performance assessment of hybrid polymer composites for pick-and-place robot grippers used in critical infrastructure. This research involved the creation of composite materials with different nanoparticle concentrations, followed by extensive testing to assess the mechanical properties of the materials, such as strength, stiffness and durability.

Design/methodology/approach

The composites comprised bidirectional interply inclined carbon fibers (C), S-glass fibers (SG), E-glass (EG), an epoxy matrix and silica nanoparticles (SNiPs). During construction, the composite materials must be carefully layered using quasi-static sequence techniques (45°C1/45°SG2/45°EG2/45°C1/45°EG2/45°SG2/45°C1) to obtain the epoxy matrix reinforcement and bonding using 0, 2, 4 and 6 wt. % of silica nanoparticles.

Findings

According to various test findings, the 4 wt. % of SNiPs added to polymer plates exhibits the maximum strength outcomes. The average results of the tensile and flexural tests for the polymer composite plates with 4 wt. % addition SNiPs were 127.103 MPa and 223.145 MPa, respectively. The average results of the tensile and flexural tests for the plates with 0 wt.% SNiPs were 115.457 MPa and 207.316 MPa, respectively.

Originality/value

The authors hereby attest that the research paper they have submitted is the result of their own independent and unique labor. All of the sources from which the thoughts and passages were derived have been properly credited. The work has not been submitted for publication anywhere and is devoid of any instances of plagiarism.

Highlights

 

  1. The study enhances the engineering materials for innovative applications.

  2. The study explores the mechanical behavior of carbon/S-glass/E-glass fiber composites.

  3. Silica nanoparticles were enhancing mechanical characteristics of the composite structure.

The study enhances the engineering materials for innovative applications.

The study explores the mechanical behavior of carbon/S-glass/E-glass fiber composites.

Silica nanoparticles were enhancing mechanical characteristics of the composite structure.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 16 October 2023

Chenghu Li

This paper aims to study the influences of eccentricity on the fastener load and bearing strength of the eccentric connection in the aircraft structure.

Abstract

Purpose

This paper aims to study the influences of eccentricity on the fastener load and bearing strength of the eccentric connection in the aircraft structure.

Design/methodology/approach

The special experiment is designed for the researches. The fastener loads of the eccentric connection are gained by using the derived formulas and numerical analysis, and the fastener load rules is verified by the experiment. The bearing strength of the eccentric connection is investigated by the experiments under different eccentricities compared with that gained from the experiment.

Findings

The study results are summarized as follows. Magnitude of the fastener load in the eccentric connection is greatly affected by distance from the fastener to the centroid of the fastener cluster and that from the fastener to the concentrated load. With the increase of eccentricity of the homolateral concentrated load, the fastener load increases, and difference of the fastener loads becomes larger, forming the short plate effect of the bucket. It means that fastener with the maximum load (the shortest plate of the bucket) leads to decrease of the bearing strength of the eccentric connection (the capacity of the bucket).

Originality/value

The investigation on the influence of eccentricity on the bearing strength of eccentric connection is firstly presented. The vector expression of the fastener load in eccentric connection is firstly derived. And the influencing mechanism of the fastener load on the bearing strengths of the different eccentric connections is demonstrated. The study results can provide guidance for the structure design of the eccentric connection.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 October 2023

Qiangqiang Zhai, Zhao Liu, Zhouzhou Song and Ping Zhu

Kriging surrogate model has demonstrated a powerful ability to be applied to a variety of engineering challenges by emulating time-consuming simulations. However, when it comes to…

Abstract

Purpose

Kriging surrogate model has demonstrated a powerful ability to be applied to a variety of engineering challenges by emulating time-consuming simulations. However, when it comes to problems with high-dimensional input variables, it may be difficult to obtain a model with high accuracy and efficiency due to the curse of dimensionality. To meet this challenge, an improved high-dimensional Kriging modeling method based on maximal information coefficient (MIC) is developed in this work.

Design/methodology/approach

The hyperparameter domain is first derived and the dataset of hyperparameter and likelihood function is collected by Latin Hypercube Sampling. MIC values are innovatively calculated from the dataset and used as prior knowledge for optimizing hyperparameters. Then, an auxiliary parameter is introduced to establish the relationship between MIC values and hyperparameters. Next, the hyperparameters are obtained by transforming the optimized auxiliary parameter. Finally, to further improve the modeling accuracy, a novel local optimization step is performed to discover more suitable hyperparameters.

Findings

The proposed method is then applied to five representative mathematical functions with dimensions ranging from 20 to 100 and an engineering case with 30 design variables.

Originality/value

The results show that the proposed high-dimensional Kriging modeling method can obtain more accurate results than the other three methods, and it has an acceptable modeling efficiency. Moreover, the proposed method is also suitable for high-dimensional problems with limited sample points.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 December 2023

Brahim Chebbab, Haroun Ragueb, Walid Ifrah and Dounya Behnous

This study addresses the reliability of a composite fiber (carbon fibers/epoxy matrix) at microscopic level, with a specific focus on its behavior under compressive stresses. The…

Abstract

Purpose

This study addresses the reliability of a composite fiber (carbon fibers/epoxy matrix) at microscopic level, with a specific focus on its behavior under compressive stresses. The primary goal is to investigate the factors that influence the reliability of the composite, specifically considering the effects of initial fiber deformation and fiber volume fraction.

Design/methodology/approach

The analysis involves a multi-step approach. Initially, micromechanics theory is employed to derive limit state equations that define the stress levels at which the fiber remains within an acceptable range of deformation. To assess the composite's structural reliability, a dedicated code is developed using the Monte Carlo method, incorporating random variables.

Findings

Results highlight the significance of initial fiber deformation and volume fraction on the composite's reliability. They indicate that the level of initial deformation of the fibers plays a crucial role in determining the composite reliability. A fiber with 0.5% initial deformation exhibits the ability to endure up to 28% additional stress compared to a fiber with 1% initial deformation. Conversely, a higher fiber volume fraction contributes positively to the composite's reliability. A composite with 60% fiber content and 0.5% initial deformation can support up to 40% additional stress compared to a composite containing 40% fibers with the same deformation.

Originality/value

The study's originality lies in its comprehensive exploration of the factors affecting the reliability of carbon fiber-epoxy matrix composites under compressive stresses. The integration of micromechanics theory and the Monte Carlo method for structural reliability analysis contributes to a thorough understanding of the composite's behavior. The findings shed light on the critical roles played by initial fiber deformation and fiber volume fraction in determining the overall reliability of the composite. Additionally, the study underscores the importance of careful fiber placement during the manufacturing process and emphasizes the role of volume fraction in ensuring the final product's reliability.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 31