Search results

1 – 10 of over 1000
Article
Publication date: 1 February 1998

Claudio Ruggieri and Robert H. Dodds

Describes a probabilistic methodology for fracture assessments of flawed structures constructed of ferritic steels using the research code WSTRESS. The probabilistic formulation…

Abstract

Describes a probabilistic methodology for fracture assessments of flawed structures constructed of ferritic steels using the research code WSTRESS. The probabilistic formulation for cleavage fracture implements a multiaxial form of the weakest link model which couples the macroscopic fracture behavior with a micromechanics model based on the statistics of microcracks. The Weibull stress, σw, emerges as a suitable near‐tip parameter to provide a connection between the microregime of failure and remote loading (J). WSTRESS builds on an iterative procedure to incorporate a 3‐D finite element description of the crack‐tip stress field and measured values of fracture toughness to calibrate the Weibull modulus, m, and the scale parameter, σu. Specific features of the code include statistical inference of Weibull parameters based on uncensored and censored models (with maximum likelihood method), construction of confidence intervals, several definitions for the near‐tip fracture process zone and other general facilities such as spatial integration of the stress field (to incorporate the random orientation of microcracks) and stochastic simulation of fracture data using the Monte Carlo method. The code also includes a convenient free‐form command language and a seamless interface with finite element results files stored in Patran binary or ASCII format.

Details

Engineering Computations, vol. 15 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 2002

Richard Unkle and Ray Venkataraman

Historically, reliability of systems has been tracked based on a common assumption that, at the system level, the failure rate follows the exponential distribution, and is…

Abstract

Historically, reliability of systems has been tracked based on a common assumption that, at the system level, the failure rate follows the exponential distribution, and is therefore assumed to be constant over the useful life of the system. However, this method, while adequate for many purposes, does not necessarily provide the early warning system that many companies need to stay ahead of expensive quality or reliability fixes. This paper presents a new method that provides the needed early warning, at a reasonable analysis cost, by combining the use of two reliability distributions for the purpose of analyzing fielded systems. In particular, this paper describes a hypothesized relationship between a key parameter contained in the Weibull distribution and within the Army Material Systems Analysis Activity (AMSAA) reliability growth model. Actual data from General Electric Transportation Systems (GETS) were used to explore this relationship. The results suggest that there indeed exists a significant relationship between the two models and both can be used in tandem to track reliability of systems.

Details

International Journal of Quality & Reliability Management, vol. 19 no. 8/9
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 13 April 2021

Edilson M. Assis, Celso Luiz Santiago Figueirôa Filho, Gabriel Costa Lima, Gisele Maria de Oliveira Salles and Ailton Pinto

The purpose of this article is to compare maintenance policies based on Weibull and q-Weibull models.

Abstract

Purpose

The purpose of this article is to compare maintenance policies based on Weibull and q-Weibull models.

Design/methodology/approach

This paper uses analytical developments, several figures and tables for graphical and numerical comparison. Previously published hydropower equipment data are used as examples.

Findings

Models for optimal maintenance interval determination based on q-Weibull distribution were defined. Closed-form expressions were found, and this allows the application of the method with small computational effort.

Practical implications

The use of the q-Weibull model to guide the definition of maintenance strategy allows decision-making to be more consistent with sample data. The flexibility of the q-Weibull model is able to produce failure rate modeling with five different formats: decreasing, constant, increasing, unimodal and U-shaped. In this way, the maintenance strategies resulting from this model should be more assertive.

Originality/value

Expressions for determining the optimal interval of preventive maintenance were deduced from q-Weibull distribution. Expected costs per maintenance cycle of Brazilian hydropower equipment were calculated with q-Weibull and Weibull distributions. These results were compared in terms of absolute values and trends. Although a large number of works on corrective and preventive maintenance have been proposed, no applications of the q-Weibull distribution were found in literature.

Details

International Journal of Quality & Reliability Management, vol. 39 no. 1
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 5 September 2017

Ijjou Tizgui, Fatima El Guezar, Hassane Bouzahir and Brahim Benaid

The purpose of this study is to select the most accurate and the most efficient method in estimating Weibull parameters at Agadir region in Morocco.

Abstract

Purpose

The purpose of this study is to select the most accurate and the most efficient method in estimating Weibull parameters at Agadir region in Morocco.

Design/methodology/approach

In this paper, Weibull distribution is used to model the wind speed in hourly time series format. Since several methods are used to adjust the Weibull distribution to the measured data, in reporting and analyzing the easiest and the most effective method, seven methods have been investigated, namely, the graphical method (GM), the maximum likelihood method (MLM), the empirical method of Justus (EMJ), the empirical method of Lysen (EML), the energy pattern factor method (EPFM), Mabchour’s method (MMab) and the method of moments (MM).

Findings

According to the statistical analysis tools (the coefficient of determination, root mean square error and chi-square test), it was found that for five months, the MLM presents more efficiency, and for four months, EMJ is ranked first and it is ranked second for February. To select only one method, the selected methods (MLM and EMJ) were compared by calculating the error in estimating the power density using Weibull distribution adjusted by those methods. The average error was found to be −0.51 and −4.56 per cent for MLM and EMJ, respectively.

Originality/value

This investigation is the first of its kind for the studied region. To estimate the available wind power at Agadir in Morocco, investors can directly use MLM to determine the Weibull parameters at this site.

Details

International Journal of Energy Sector Management, vol. 11 no. 4
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 19 April 2011

S. Samar Ali and S. Kannan

The objective of the paper is to consider the problem of the strength of a manufactured item against stress, when the component follows Weibull failure law. Different cases of…

Abstract

Purpose

The objective of the paper is to consider the problem of the strength of a manufactured item against stress, when the component follows Weibull failure law. Different cases of stress and strength with varying parameters are discussed for the WeibullWeibull stress‐strength model considered in this paper. The application of the proposed technique will help in understanding the design methodology of the system and addressing the risks involved in perceived quality and reliability levels by eliminating or at least reducing the risk impact at the design phase.

Design/methodology/approach

Generalised WeibullWeibull stress‐strength models have been analysed for different cases of shape parameters for stress and strength to estimate the reliability of the system. The model is generalized using semi‐regenerative stochastic processes with the help of a state space approach to include a repair facility.

Findings

Different cases of stress and strength with varying parameters have been discussed for the WeibullWeibull stress‐strength models considered in this paper. The results show how the stress‐strength reliability model is affected by changes in the parameters of stress and strength. The application of the proposed technique will help in understanding the design methodology of the system, and also lead to the problem of addressing the risks involved in perceived quality and reliability levels by eliminating or at least reducing the risk impact in the design phase.

Research limitations/implications

The present study is limited to a few special cases of WeibullWeibull stress‐strength models. The authors propose to continue to study the behaviour of general Weibull strength against exponential stress in particular and to identify the shape parameter that maximises the strength reliability.

Practical implications

The application of the proposed technique will help in understanding the design methodology of the system, and also lead to the problem of addressing the risks involved in perceived quality and reliability levels by eliminating or at least reducing the risk impact at the design phase. The model has been extended and generalized to include a repair facility under the assumption that all the random variables involved in the analysis are arbitrarily distributed (i.e. general).

Originality/value

In the WeibullWeibull stress‐strength model of reliability, different cases have been considered. In the first case, both parameters of stress‐strength have the same values and are independent of the distribution. In the second case, if the shape parameter of the strength is twice that of the stress, the probability will have a normal distribution with different parameter values. In the third case, if the shape parameter of the stress is twice that of the strength, then probability distribution is a parabolic cylindrical function. The study shows how to proceed in all cases. The model is generalized to include a repair facility, with all the random variables involved in the analysis being arbitrarily distributed using semi‐regenerative stochastic processes.

Details

International Journal of Quality & Reliability Management, vol. 28 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 18 October 2011

Kiyoshi Kobayashi and Kiyoyuki Kaito

This study aims to focus on asset management of large‐scale information systems supporting infrastructures and especially seeks to address a methodology of their statistical…

Abstract

Purpose

This study aims to focus on asset management of large‐scale information systems supporting infrastructures and especially seeks to address a methodology of their statistical deterioration prediction based on their historical inspection data. Information systems are composed of many devices. Deterioration process i.e. wear‐out failure generation process of those devices is formulated by a Weibull hazard model. Furthermore, in order to consider the heterogeneity of the hazard rate of each device, the random proportional Weibull hazard model, which expresses the heterogeneity of the hazard rate as random variables, is to be proposed.

Design/methodology/approach

Large‐scale information systems comprise many components, and different types of components might have different hazard rates. Therefore, when analyzing faults of information systems that comprise various types of devices and components, it is important to consider the heterogeneity of the hazard rates that exist between the different types of components. In this study, with this in consideration, the random proportional Weibull hazard model, whose heterogeneity of hazard rates is subject to a gamma distribution, is formulated and a methodology is proposed which estimates the failure rate of various components comprising an information system.

Findings

Through a case study using a traffic control system for expressways, the validity of the proposed model is empirically verified. Concretely, as for HDD, the service life at which the survival probability is 50 percent is estimated as 158 months. However, even for the same HDD, use environment differs according to usage. Actually, among the three different usages (PC, server, others), failures happen earliest in the case of PCs, which have the highest heterogeneity parameter and a survival probability of 50 percent after 135 months of usage. On the other hand, as for others, its survival probability is 50 percent at 303 months.

Originality/value

To operationally express the heterogeneity of failure rates, the Weibull hazard model is employed as a base, and a random proportional Weibull hazard model expressing the proportional heterogeneity of hazard rates with a standard gamma distribution is formulated. By estimating the parameter of the standard proportional Weibull hazard function and the parameter of the probability distribution that expresses the heterogeneity of the proportionality constant between the types, the random proportional Weibull hazard model can easily express the heterogeneity of the hazard rates between types and components.

Details

Facilities, vol. 29 no. 13/14
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 6 August 2018

Keerti Tiwari, Davinder S. Saini and Sunil V. Bhooshan

This paper aims to exploit an orthogonal space-time block code (OSTBC) and maximal ratio combining (MRC) techniques to evaluate error rate performance of multiple-input…

Abstract

Purpose

This paper aims to exploit an orthogonal space-time block code (OSTBC) and maximal ratio combining (MRC) techniques to evaluate error rate performance of multiple-input multiple-output system for different modulation schemes operating over single- and double-Weibull fading channels.

Design/methodology/approach

The authors provided a novel analytical expression for cumulative distribution function (CDF) of double-Weibull distribution in the form of Meijer-G function. They also evaluated probability density function (PDF) and CDF for single- and double-Weibull random variables. CDF-based closed-form expressions of symbol error rate (SER) are computed for the proposed systems’ design.

Findings

Based on simulation and analytical results, the authors have shown that double-Weibull fading which shows the cascaded nature of channel gives significantly poor SER performance compared to that of single-Weibull fading. Moreover, MRC offers an improved error rate performance compared to that of OSTBC. As the fading parameter increases for any modulation technique, the required signal-to-noise ratio (SNR) gap between single- and double-Weibull fading decreases. Finally, it is observed that the analytical results are a good approximation to simulation results.

Practical implications

For practical implication, the authors use a number of antennas at the base station, but solely to maximize performance, one can use receive diversity, i.e. MRC.

Originality/value

Using higher-order modulation (i.e. 16-QAM), 4 and 1 dB less SNR is required at high and less fading, respectively, in single-Weibull fading as compared to double-Weibull fading. Hence, at higher-order modulation, double-Weibull channel model performs better as compared to lower-order modulation.

Article
Publication date: 26 July 2013

Edilson M. Assis, Ernesto P. Borges and Silvio A.B. Vieira de Melo

The purpose of this paper is to analyze mathematical aspects of the q‐Weibull model and explore the influence of the parameter q.

Abstract

Purpose

The purpose of this paper is to analyze mathematical aspects of the q‐Weibull model and explore the influence of the parameter q.

Design/methodology/approach

The paper uses analytical developments with graph illustrations and an application to a practical example.

Findings

The q‐Weibull distribution function is able to reproduce the bathtub shape curve for the failure rate function with a single set of parameters. Moments of the distribution are also presented.

Practical implications

The generalized q‐Weibull distribution unifies various possible descriptions for the failure rate function: monotonically decreasing, monotonically increasing, unimodal and U‐shaped (bathtub) curves. It recovers the usual Weibull distribution as a particular case. It represents a unification of models usually found in reliability analysis. Q‐Weibull model has its inspiration in nonextensive statistics, used to describe complex systems with long‐range interactions and/or long‐term memory. This theoretical background may help the understanding of the underlying mechanisms for failure events in engineering problems.

Originality/value

Q‐Weibull model has already been introduced in the literature, but it was not realized that it is able to reproduce a bathtub curve using a unique set of parameters. The paper brings a mapping of the parameters, showing the range of the parameters that should be used for each type of curve.

Details

International Journal of Quality & Reliability Management, vol. 30 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 12 September 2020

Niveditha A and Ravichandran Joghee

While Six Sigma metrics have been studied by researchers in detail for normal distribution-based data, in this paper, we have attempted to study the Six Sigma metrics for…

Abstract

Purpose

While Six Sigma metrics have been studied by researchers in detail for normal distribution-based data, in this paper, we have attempted to study the Six Sigma metrics for two-parameter Weibull distribution that is useful in many life test data analyses.

Design/methodology/approach

In the theory of Six Sigma, most of the processes are assumed normal and Six Sigma metrics are determined for such a process of interest. In reliability studies non-normal distributions are more appropriate for life tests. In this paper, a theoretical procedure is developed for determining Six Sigma metrics when the underlying process follows two-parameter Weibull distribution. Numerical evaluations are also considered to study the proposed method.

Findings

In this paper, by matching the probabilities under different normal process-based sigma quality levels (SQLs), we first determined the Six Sigma specification limits (Lower and Upper Six Sigma Limits- LSSL and USSL) for the two-parameter Weibull distribution by setting different values for the shape parameter and the scaling parameter. Then, the lower SQL (LSQL) and upper SQL (USQL) values are obtained for the Weibull distribution with centered and shifted cases. We presented numerical results for Six Sigma metrics of Weibull distribution with different parameter settings. We also simulated a set of 1,000 values from this Weibull distribution for both centered and shifted cases to evaluate the Six Sigma performance metrics. It is found that the SQLs under two-parameter Weibull distribution are slightly lesser than those when the process is assumed normal.

Originality/value

The theoretical approach proposed for determining Six Sigma metrics for Weibull distribution is new to the Six Sigma Quality practitioners who commonly deal with normal process or normal approximation to non-normal processes. The procedure developed here is, in fact, used to first determine LSSL and USSL followed by which LSQL and USQL are obtained. This in turn has helped to compute the Six Sigma metrics such as defects per million opportunities (DPMOs) and the parts that are extremely good per million opportunities (EGPMOs) under two-parameter Weibull distribution for lower-the-better (LTB) and higher-the-better (HTB) quality characteristics. We believe that this approach is quite new to the practitioners, and it is not only useful to the practitioners but will also serve to motivate the researchers to do more work in this field of research.

Details

International Journal of Quality & Reliability Management, vol. 38 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 12 February 2021

Ahmet Esat Suzer and Aziz Kaba

The purpose of this study is to describe precisely the wind speed regime and characteristics of a runway of an International Airport, the north-western part of Turkey.

Abstract

Purpose

The purpose of this study is to describe precisely the wind speed regime and characteristics of a runway of an International Airport, the north-western part of Turkey.

Design methodology approach

Three different probability distributions, namely, Inverse Gaussian (IG), widely used two-parameter Weibull and Rayleigh distributions in the literature, are used to represent wind regime and characteristics of the runway. The parameters of each distribution are estimated by the pattern search (PS)-based heuristic algorithm. The results are compared with the other three methods-based numerical computation, including maximum-likelihood method, moment method (MoM) and power density method, respectively. To evaluate the fitting performance of the proposed method, several statistical goodness tests including the mostly used root mean square error (RMSE) and chi-squared (X2) are conducted.

Findings

In the light of the statistical goodness tests, the results of the IG-based PS attain better performance than the classical Weibull and Rayleigh functions. Both the RMSE and X2 values achieved by the IG-based PS method lower than that of Weibull and Rayleigh distributions. It exhibits a better fitting performance with 0.0074 for RMSE and 0.58 × 10−4 for X2 for probability density function (PDF) in 2012 and with RMSE of 0.0084 and X2 of 0.74 × 10−4 for PDF in 2013. As regard the cumulative density function of the measured wind data, the best results are found to be Weibull-based PS with RMSE of 0.0175 and X2 of 3.25 × 10−4 in 2012. However, Weibull-based MoM shows more excellent ability in 2013, with RMSE of 0.0166 and X2 of 2.94 × 10−4. Consequently, it is considered that the results of this study confirm that IG-based PS with the lowest error value can a good choice to model more accurately and characterize the wind speed profile of the airport.

Practical implications

This paper presents a realistic point of view regarding the wind regime and characteristics of an airport. This study may cast the light on researchers, policymakers, policy analysts and airport designers intending to investigate the wind profile of a runway at the airport in the world and also provide a significant pathway on how to determine the wind distribution of the runway.

Originality value

Instead of the well-known Weibull distribution for the representing of wind distribution in the literature, in this paper, IG distribution is used. Furthermore, the suitability of IG to represent the wind distribution is validated when compared with two-parameter Weibull and Rayleigh distributions. Besides, the performance and efficiency of PS have been evaluated by comparing it with other methods.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 1000