Search results

1 – 10 of 258
Article
Publication date: 11 September 2019

Jiwoon Lee, Jesse Walker, Sanjay Natarajan and Sung Yi

Extrusion-based additive manufacturing (AM) has been considered as a promising technique to fabricate scaffolds for tissue engineering due to affordability, versatility and…

Abstract

Purpose

Extrusion-based additive manufacturing (AM) has been considered as a promising technique to fabricate scaffolds for tissue engineering due to affordability, versatility and ability to print porous structures. The reliability and controllability of the printing process are necessary to produce 3D-printed scaffolds with desired properties and depend on the geometric characteristics such as porosity and pore diameter. The purpose of this study is to develop an analytical model and explore its effectiveness in the prediction of geometric characteristics of 3D-printed scaffolds.

Design/methodology/approach

An analytical model was developed to simulate the geometric characteristics of scaffolds produced by extrusion-based AM using fluid mechanics. Polycaprolactone (PCL) was chosen as a scaffold material and was assumed to be a non-Newtonian fluid for the model. The effectiveness of the model was verified through comparison with the experimental results.

Findings

A comparison study between simulation and experimental results shows that strut diameter, pore size and porosity of scaffolds can be predicted by using extrusion pressure, temperature, nozzle diameter, nozzle length and printing speed. Simulation results demonstrate that geometric characteristics have a strong relationship with processing parameters, and the model developed in this study can be used for predicting the scaffold properties for the extrusion-based 3D bioprinting process.

Originality/value

The present study provides a prediction model that can simulate the printing process by a simple input of processing parameters. The geometric characteristics can be predicted prior to the experimental verification, and such prediction will reduce the process time and effort when a new material or method is applied.

Details

Rapid Prototyping Journal, vol. 26 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 July 2021

Mohammad Qasim Shaikh, Serena Graziosi and Sundar Vedanarayan Atre

This paper aims to investigate the feasibility of supportless printing of lattice structures by metal fused filament fabrication (MF3) of Ti-6Al-4V. Additionally, an empirical…

569

Abstract

Purpose

This paper aims to investigate the feasibility of supportless printing of lattice structures by metal fused filament fabrication (MF3) of Ti-6Al-4V. Additionally, an empirical method was presented for the estimation of extrudate deflection in unsupported regions of lattice cells for different geometric configurations.

Design/methodology/approach

Metal-polymer feedstock with a solids-loading of 59 Vol.% compounded and extruded into a filament was used for three-dimensional printing of lattice structures. A unit cell was used as a starting point, which was then extended to multi-stacked lattice structures. Feasible MF3 processing conditions were identified to fabricate defect-free lattice structures. The effects of lattice geometry parameters on part deflection and relative density were investigated at the unit cell level. Computational simulations were used to predict the part quality and results were verified by experimental printing. Finally, using the identified processing and geometry parameters, multi-stacked lattice structures were successfully printed and sintered.

Findings

Lattice geometry required considerable changes in MF3 printing parameters as compared to printing bulk parts. Lattice cell dimensions showed a considerable effect on dimensional variations and relative density due to varying aspect ratios. The experimental printing of lattice showed large deflection/sagging in unsupported regions due to gravity, whereas simulation was unable to estimate such deflection. Hence, an analytical model was presented to estimate extrudate deflections and verified with experimental results. Lack of diffusion between beads was observed in the bottom facing surface of unsupported geometry of sintered unit cells as an effect of extrudate sagging in the green part stage. This study proves that MF3 can fabricate fully dense Ti-6Al-4V lattice structures that appear to be a promising candidate for applications where mechanical performance, light-weighting and design customization are required.

Originality/value

Supportless printing of lattice structures having tiny cross-sectional areas and unsupported geometries is highly challenging for an extrusion-based additive manufacturing (AM) process. This study investigated the AM of Ti-6Al-4V supportless lattice structures using the MF3 process for the first time.

Article
Publication date: 18 February 2019

Julia Kaufhold, Johannes Kohl, Venkatesh Naidu Nerella, Christof Schroefl, Christoph Wenderdel, Paul Blankenstein and Viktor Mechtcherine

Extrusion-based digital construction (DC) approaches make it feasible to overcome constraints of conventional construction, namely, high formwork costs, long total construction…

Abstract

Purpose

Extrusion-based digital construction (DC) approaches make it feasible to overcome constraints of conventional construction, namely, high formwork costs, long total construction times, low productivity and geometrical inflexibility. However, to date, no satisfactory solutions for extruding strongly inclined and horizontal elements are available. A wood-starch-composite has been systematically developed as a sustainable support material (SM) for extrusion-based DC.

Design/methodology/approach

Material and process-specific requirements were identified for this purpose, and a feasible process chain was developed. A parametric study was conducted to determine the influence of SM composition on its extrusion feasibility and compressive strength. Various compositions with two starch types and two wood particle shapes were tested. New, specific testing methods were developed. Selected compositions were tested using a 3D-printing device to verify extrudability and form stability.

Findings

Relationships between material compositions of SM and its rheological and mechanical properties were identified. All mixtures showed sufficient compressive strength in respect of the loading conditions analysed. However, their flow properties varied significantly. A mixture of native maize starch and wood floor was identified as the best variant (compressive strength 2.3 MPa).

Research limitations/implications

Comprehensive investigations of possible process chains, as well as full-scale demonstration and optimisation of the process parameters, were not in the scope of this paper. Such investigations are intended in further studies.

Practical implications

The general applicability of wood-based SM for DC with cement-based construction materials was proved.

Originality/value

The findings offer a novel and promising solution for 3D-printing of non-vertical concrete elements. Experimental setup and material compositions are detailed to ensure reproducibility.

Details

Rapid Prototyping Journal, vol. 25 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 August 2019

Yannapol Sriphutkiat and Yufeng Zhou

The capability of microparticle/objects patterning in the three-dimensional (3D) printing structure could improve its performance and functionalities. This paper aims to propose…

Abstract

Purpose

The capability of microparticle/objects patterning in the three-dimensional (3D) printing structure could improve its performance and functionalities. This paper aims to propose and evaluate a novel acoustic manipulation approach.

Design/methodology/approach

A novel method to accumulate the microparticles in the cylindrical tube during the 3D printing process is proposed by acoustically exciting the structural vibration of the cylindrical tube at a specific frequency, and subsequently, focusing the 50-μm polystyrene microparticles at the produced pressure node toward the center of the tube by the acoustic radiation force. To realize this solution, a piezoceramic plate was glued to the outside wall of a cylindrical glass tube with a tapered nozzle. The accumulation of microparticles in the tube and printing structure was monitored microscopically and the accumulation time and width were quantitatively evaluated. Furthermore, the application of such technology was also evaluated in the L929 and PC-12 cells suspended in the sodium alginate and gelatin methacryloyl.

Findings

The measured location of pressure and the excitation frequency of the cylindrical glass tube (172 kHz) agreed quite well with our numerical simulation (168 kHz). Acoustic excitation could effectively and consistently accumulate the microparticles. It is found that the accumulation time and width of microparticles in the tube increase with the concentration of sodium alginate and microparticles in the ink. As a result, the microparticles are concentrated mostly in the central part of the printing structure. In comparison to the conventional printing strategy, acoustic excitation could significantly reduce the width of accumulated microparticles in the printing structure (p < 0.05). In addition, the possibility of high harmonics (385 and 657 kHz) was also explored. L929 and PC-12 cells suspended in the hydrogel can also be accumulated successfully.

Originality/value

This paper proves that the proposed acoustic approach is able to increase the accuracy of printing capability at a low cost, easy configuration and low power output.

Details

Rapid Prototyping Journal, vol. 25 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 May 2024

Kimia Abedi, Hamid Keshvari and Mehran Solati-Hashjin

This study aims to develop a simplified bioink preparation method that can be applied to most hydrogel bioinks used in extrusion-based techniques.

Abstract

Purpose

This study aims to develop a simplified bioink preparation method that can be applied to most hydrogel bioinks used in extrusion-based techniques.

Design/methodology/approach

The parameters of the bioprinting process significantly affect the printability of the bioink and the viability of cells. In turn, the bioink formulation and its physicochemical properties may influence the appropriate range of printing parameters. In extrusion-based bioprinting, the rheology of the bioink affects the printing pressure, cell survival and structural integrity. Three concentrations of alginate-gelatin hydrogel were prepared and printed at three different flow rates and nozzle gauges to investigate the print parameters. Other characterizations were performed to evaluate the hydrogel structure, printability, gelation time, swelling and degradation rates of the bioink and cell viability. An experimental design was used to determine optimal parameters. The analyses included live/dead assays, rheological measurements, swelling and degradation.

Findings

The experimental design results showed that the hydrogel flow rate substantially influenced printing accuracy and pressure. The best hydrogel flow rate in this study was 10 ml/h with a nozzle gauge of 18% and 4% alginate. Three different concentrations of alginate-gelatin hydrogels were found to exhibit shear-thinning behavior during printing. After seven days, 46% of the structure in the 4% alginate-5% gelatin sample remained intact. After printing, the viability of skin fibroblast cells for the optimized sample was 91%.

Originality/value

This methodology offers a straightforward bioink preparation method applicable to the majority of hydrogels used in extrusion-based procedures. This can also be considered a prerequisite for cell printing.

Details

Rapid Prototyping Journal, vol. 30 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 May 2023

Adib Bin Rashid, Abu Saleh Md. Nakib Uddin, Fahima Akter Azrin, Khondker Safin Kaosar Saad and Md Enamul Hoque

The main objective of this paper is to illustrate an analytical view of different methods of 3D bioprinting, variations, formulations and characteristics of biomaterials. This…

Abstract

Purpose

The main objective of this paper is to illustrate an analytical view of different methods of 3D bioprinting, variations, formulations and characteristics of biomaterials. This review also aims to discover all the areas of applications and scopes of further improvement of 3D bioprinters in this era of the Fourth Industrial Revolution.

Design/methodology/approach

This paper reviewed a number of papers that carried evaluations of different 3D bioprinting methods with different biomaterials, using different pumps to print 3D scaffolds, living cells, tissue and organs. All the papers and articles are collected from different journals and conference papers from 2014 to 2022.

Findings

This paper briefly explains how the concept of a 3D bioprinter was developed from a 3D printer and how it affects the biomedical field and helps to recover the lack of organ donors. It also gives a clear explanation of three basic processes and different strategies of these processes and the criteria of biomaterial selection. This paper gives insights into how 3D bioprinters can be assisted with machine learning to increase their scope of application.

Research limitations/implications

The chosen research approach may limit the generalizability of the research findings. As a result, researchers are encouraged to test the proposed hypotheses further.

Practical implications

This paper includes implications for developing 3D bioprinters, developing biomaterials and increasing the printability of 3D bioprinters.

Originality/value

This paper addresses an identified need by investigating how to enable 3D bioprinting performance.

Details

Rapid Prototyping Journal, vol. 29 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 July 2019

Jianzhong Shang, Xin Li, Zhuo Wang, Rong Wang and Hong Zhu

This study aims to investigate rheological and extrusion behavior of thermosetting epoxy resins, which to find the universal property and printing parameters for extrusion-based

Abstract

Purpose

This study aims to investigate rheological and extrusion behavior of thermosetting epoxy resins, which to find the universal property and printing parameters for extrusion-based rapid prototyping applications.

Design/methodology/approach

The thickener proportion greatly influences its viscosity and rheological behavior and therefore plays an important role in the shape of the cross-section of the extrudate.

Findings

A pseudoplastic (shear-thinning) is a basic requirement for obtaining extruded lines with plump cross-sections. In addition to the effects of the rheological behavior of the composite, shape maintenance and its wettability on the substrate, the cross-sectional geometry of the extrudate is also strongly affected by printing process parameters including the extrusion nozzle height, nozzle moving speed, extrusion rate and critical nozzle height. Proper combinations of these process parameters are necessary to obtain single-line extrudates with plump cross-sections and 3-D objects with dimensional accuracy, uniform wall thickness, good wall uprightness and no wall slumping. Formulas and procedures for determining these extrusion parameters are proposed and demonstrated in experiments.

Originality/value

The results obtained have been explained in terms of the interactions among the rheological properties of the composite, the shear rate imposed on the composite during extrusion, the wettability of the composite on the substrate and the shape maintenance of the composite during extrusion.

Details

Rapid Prototyping Journal, vol. 25 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 July 2024

Arthur de Carvalho Cruzeiro, Leonardo Santana, Danay Manzo Jaime, Sílvia Ramoa, Jorge Lino Alves and Guilherme Mariz de Oliveira Barra

This study aims to evaluate in situ oxidative polymerization of aniline (Ani) as a post-processing method to promote extrusion-based 3D printed parts, made from insulating…

Abstract

Purpose

This study aims to evaluate in situ oxidative polymerization of aniline (Ani) as a post-processing method to promote extrusion-based 3D printed parts, made from insulating polymers, to components with functional properties, including electrical conductivity and chemical sensitivity.

Design/methodology/approach

Extrusion-based 3D printed parts of polyethylene terephthalate modified with glycol (PETG) and polypropylene (PP) were coated in an aqueous acid solution via in situ oxidative polymerization of Ani. First, the feedstocks were characterized. Densely printed samples were then used to assess the adhesion of polyaniline (PAni) and electrical conductivity on printed parts. The best feedstock candidate for PAni coating was selected for further analysis. Last, a Taguchi methodology was used to evaluate the influence of printing parameters on the coating of porous samples. Analysis of variance and Tukey post hoc test were used to identify the best levels for each parameter.

Findings

Colorimetry measurements showed significant color shifts in PP samples and no shifts in PETG samples upon pullout testing. The incorporation of PAni content and electrical conductivity were, respectively, 41% and 571% higher for PETG in comparison to PP. Upon coating, the surface energy of both materials decreased. Additionally, the dynamic mechanical analysis test showed minimal influence of PAni over the dynamic mechanical properties of PETG. The parametric study indicated that only layer thickness and infill pattern had a significant influence on PAni incorporation and electrical conductivity of coated porous samples.

Originality/value

Current literature reports difficulties in incorporating PAni without affecting dimensional precision and feedstock stability. In situ, oxidative polymerization of Ani could overcome these limitations. However, its use as a functional post-processing of extrusion-based printed parts is a novelty.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 28 February 2023

Manuel Jesus, Ana Sofia Guimarães, Bárbara Rangel and Jorge Lino Alves

The paper seeks to bridge the already familiar benefits of 3D printing (3DP) to the rehabilitation of cultural heritage, still based on the use of complex and expensive…

2045

Abstract

Purpose

The paper seeks to bridge the already familiar benefits of 3D printing (3DP) to the rehabilitation of cultural heritage, still based on the use of complex and expensive handcrafted techniques and scarce materials.

Design/methodology/approach

A compilation of different information on frequent anomalies in cultural heritage buildings and commonly used materials is conducted; subsequently, some innovative techniques used in the construction sector (3DP and 3D scanning) are addressed, as well as some case studies related to the rehabilitation of cultural heritage building elements, leading to a reflection on the opportunities and challenges of this application within these types of buildings.

Findings

The compilation of information summarised in the paper provided a clear reflection on the great potential of 3DP for cultural heritage rehabilitation, requiring the development of new mixtures (lime mortars, for example) compatible with the existing surface and, eventually, incorporating some residues that may improve interesting properties; the design of different extruders, compatible with the new mixtures developed and the articulation of 3D printers with the available mapping tools (photogrammetry and laser scanning) to reproduce the component as accurately as possible.

Originality/value

This paper sets the path for a new application of 3DP in construction, namely in the field of cultural heritage rehabilitation, by identifying some key opportunities, challenges and for designing the process flow associated with the different technologies involved.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 18 July 2024

Vishal Mishra, Jitendra Kumar, Sushant Negi and Simanchal Kar

The current study aims to develop a 3D-printed continuous metal fiber-reinforced recycled thermoplastic composite using an in-nozzle impregnation technique.

Abstract

Purpose

The current study aims to develop a 3D-printed continuous metal fiber-reinforced recycled thermoplastic composite using an in-nozzle impregnation technique.

Design/methodology/approach

Recycled acrylonitrile butadiene styrene (RABS) plastic was blended with virgin ABS (VABS) plastic in a ratio of 60:40 weight proportion to develop a 3D printing filament that was used as a matrix material, while post-used continuous brass wire (CBW) was used as a reinforcement. 3D printing was done by using a self-customized print head to fabricate the flexural, compression and interlaminar shear stress (ILSS) test samples to evaluate the bending, compressive and ILSS properties of the build samples and compared with VABS and RABS-B samples. Moreover, the physical properties of the samples were also analyzed.

Findings

Upon three-point bend, compression and ILSS testing, it was found that RABS-B/CBW composite 3D printed with 0.7 mm layer width exhibited a notable improvement in maximum flexural load (Lmax), flexural stress at maximum load (sfmax), flex modulus (Ef) and work of fracture (WOF), compression modulus (Ec) and ILSS properties by 30.5%, 49.6%, 88.4% 13.8, 21.6% and 30.3% respectively.

Originality/value

Limited research has been conducted on the in-nozzle impregnation technique for 3D printing metal fiber-reinforced recycled thermoplastic composites. Adopting this method holds the potential to create durable and high-strength sustainable composites suitable for engineering applications, thereby diminishing dependence on virgin materials.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 258