Search results

1 – 10 of 206
Article
Publication date: 7 September 2023

Esra Kandemir Beser

The purpose of this study is to create an extended equivalent circuit model for a compound DC motor, consisting completely of electrical parameters and quantities.

Abstract

Purpose

The purpose of this study is to create an extended equivalent circuit model for a compound DC motor, consisting completely of electrical parameters and quantities.

Design/methodology/approach

The dynamic model of the compound DC motor is obtained by establishing the voltage equations for the armature and excitation circuit and the mechanical equation for the mechanical part. The mechanical parameters in the dynamic model are converted into electrical parameters with an electrical circuit proposed for the mechanical part. By combining the armature and excitation circuits with the electrical circuit created for the mechanical part, the extended equivalent circuit model of the compound DC motor is obtained. Because the proposed extended equivalent model is completely an electrical circuit, simulations can be made in the circuit simulation programme. Simulations of the proposed compound DC motor circuit were carried out, and the accuracy of the proposed circuit was verified by performing experimental studies with an existing compound motor.

Findings

When comparing speed and current profiles in experiments and simulations, it is seen that compound DC motor can be modelled with the proposed equivalent circuit including completely electrical elements in a simulation programme for the circuits. The results show that the proposed equivalent circuit satisfies the dynamic model of the compound motor.

Originality/value

In DC machine models, armature and excitation circuits are given as an electrical circuit, and mechanical part of the machine is modelled by only mechanical equations. The originality of this study is converting the dynamic model of an electrical machine consisting of electrical and mechanical equations into a completely electrical circuit. With the proposed method, the dynamic model of many motors can be converted into a completely electrical circuit. In this way, motors can be simulated as an electrical circuit in simulation programmes for the circuits, and the dynamic behaviour of motors can be obtained.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2023

Nour Mohammad Murad, Antonio Jaomiary, Samar Yazdani, Fayrouz Haddad, Mathieu Guerin, George Chan, Wenceslas Rahajandraibe and Sahbi Baccar

This paper aims to develop high-pass (HP) negative group delay (NGD) investigation based on three-port lumped circuit. The main particularity of the proposed three-port passive…

Abstract

Purpose

This paper aims to develop high-pass (HP) negative group delay (NGD) investigation based on three-port lumped circuit. The main particularity of the proposed three-port passive topology is the consideration of only a single circuit element represented by a capacitor.

Design/methodology/approach

The methodology of the paper is to consider the S-matrix equivalent model derived from admittance matrix approach. So, an S-matrix equivalent model of a three-port circuit topology is established from admittance matrix approach. The frequency-dependent basic expressions are explored to perform the HP-NGD analysis. Then, the existence condition of HP-NGD function type is analytically demonstrated. The specific characteristics and synthesis equations of HP-NGD circuit with respect to the desired optimal NGD value are established.

Findings

After computing the frequency expressions to perform the HP-NGD analysis, this study demonstrated the existence condition of HP-NGD function type analytically. The validity of the HP-NGD theory is verified by a prototype of three-port circuit. The proof-of-concept (POC) single capacitor three-port circuit presents an NGD response and characteristics from analytical calculation and simulation is in very good correlation.

Originality/value

An innovative theory of HP-NGD three-port circuit is studied. The proposed HP-NGD topology is constituted by only a single capacitor. After the topological description, the S-matrix model is established from the Y-matrix by means of Kirchhoff voltage law and Kirchhoff current law equations. A POC of single capacitor three-port circuit was designed and simulated with a commercial tool. Then, a prototype with a surface-mounted device component was fabricated and tested. As expected, simulation and measurement results in very good agreement with the calculated model show the feasibility of the HP-NGD behavior. This work is compared to other NGD-type function with diverse number of ports and components.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 October 2022

Xiongmin Tang, Tianhong Jiang, Weizheng Chen, ZhiHong Lin, Zexin Zhou, Chen Yongquan and Miao Zhang

How to use a simple and classical topology to provide a high-efficiency excitation voltage for dielectric barrier discharge (DBD) loads is one of the primary problems to be solved…

Abstract

Purpose

How to use a simple and classical topology to provide a high-efficiency excitation voltage for dielectric barrier discharge (DBD) loads is one of the primary problems to be solved for DBD application fields.

Design/methodology/approach

To address the issue, a set of modes that can generate a high-efficiency pulse excitation voltage in a full-bridge inverter are adopted. With the set of modes, the unique equivalent circuit of DBD loads and the parasitic parameter of the step-up transformer can be fully used. Based on the set of modes, a control strategy for the full-bridge inverter is designed. To test the performance of the power supply, a simulation model is established and an experimental prototype is made with a DBD excimer lamp.

Findings

The simulation and experimental results show that not only a high-efficiency excitation voltage can be generated for the DBD load, but also the soft switching of all power switch is realized. Besides this, with the set of modes and the proposed control strategy, the inverter can operate in a high frequency. Compared with other types of power supplies, the power supply used in the paper can fully take advantage of the potential of the excimer lamp at the same input power.

Originality/value

This work considers that how to use a simple and classical topology to provide a high-efficiency excitation voltage for DBD loads is one of the primary problems to be solved for DBD application fields.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 31 January 2024

Elham Zandi, Majid Fouladian and Jalil Mazloum

The purpose of this research is to efficiently separate incident terahertz (THz) waves into distinct transmission and reflection channels by minimizing the absorption ratio. So…

Abstract

Purpose

The purpose of this research is to efficiently separate incident terahertz (THz) waves into distinct transmission and reflection channels by minimizing the absorption ratio. So, the optical systems operating within the THz frequency range can developed. To achieve a multi-band response, four different periodic arrays of graphene patterns are used. These arrays are strategically stacked on both sides of three SU-8 photoresists, serving as dielectric materials. Consequently, each layer exhibits a unique influence on the device's response, and by applying four external bias voltages, the behavior of the device can be precisely controlled and adjusted.

Design/methodology/approach

A novel optoelectronic device operating in the THz frequency range is introduced, using periodic arrays of graphene patterns and SU-8 photoresist dielectrics. The design of this device is based on meta-surface principles, using both the equivalent circuit model (ECM) and transmission line concept. The output of the device is a THz coupler implemented by analyzing the reflection and transmission channels. The structure is characterized using the ECM and validated through comprehensive full-wave simulations. By representing the electromagnetic phenomenon with passive circuit elements, enabling the calculation of absorption, reflection and transmission through the application of the theory of maximum power transfer.

Findings

Based on simulation results and theoretical analysis, the proposed device exhibits sensitivity to gate biasing, enabling efficient reflection and transmission of THz waves. The device achieves reflection and transmission peaks exceeding across the five distinct THz bands 90%, and its behavior can be tuned by external gate biasing. Moreover, the device's sensitivity to variations in geometrical parameters and chemical potentials demonstrates its reliable performance. With its outstanding performance, this high-performance meta-surface emerges as an ideal candidate for fundamental building blocks in larger optical systems, including sensors and detectors, operating within the THz frequency band.

Originality/value

The proposed device covers a significant portion of the THz gap through the provision of five adjustable peaks for reflection and transmission channels. Additionally, the ECM and impedance matching concept offers a simplified and time-efficient approach to designing the meta-surface. Leveraging this approach, the proposed device is effectively represented using passive circuit elements such as inductors, capacitors and resistors, while its performance is validated through the utilization of the finite element method (FEM) as a full-wave simulation tool. This combination of circuit modeling and FEM simulation contributes to the robustness and accuracy of the device's performance evaluation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 August 2023

Yuchen Xi, Qinying Wang, Xiaofang Luo, Xingshou Zhang, Tingyao Liu, Huaibei Zheng, Lijin Dong, Jie Wang and Jin Zhang

The purpose of this paper is to investigate the effect Ti on stress corrosion cracking (SCC) and flow accelerated stress corrosion cracking (FA-SCC) behavior and mechanisms of…

Abstract

Purpose

The purpose of this paper is to investigate the effect Ti on stress corrosion cracking (SCC) and flow accelerated stress corrosion cracking (FA-SCC) behavior and mechanisms of Monel K500 alloy.

Design/methodology/approach

Monel K500 alloy with different Ti contents was designed. A metallurgical microscope (XJP-3C) and scanning electron microscopy (EV0 MA15 Zeiss) with an energy dispersive spectroscopy were used to analyze the microstructure of the Monel K500 alloy. In situ electrochemical tests were carried out in static and flowing seawater to study FA-SCC behavior.

Findings

The number of TiCN particles in the alloy increased as the increase of Ti content. The static corrosion and SCC of Monel K500 alloy are reduced as the content of Ti increases. Generally, the SCC of alloys was caused by the synergistic effect of the anodic dissolution at exposed metal matrix and the pit corrosion of metal matrix adjacent to TiCN particles, which was further accelerated by flowing.

Originality/value

The corrosion behavior and mechanism of Monel K500 alloy with different Ti contents in a complex flowing seawater environment are still unclear, which remain systematic study to insure the safe service of the alloy.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 January 2024

Qiang Sun, Quantong Jiang, Siwei Wu, Chang Liu, Heng Tang, L. Song, Hao Shi, Jizhou Duan and BaoRong Hou

The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large…

Abstract

Purpose

The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large concentration gradient.

Design/methodology/approach

The macroscopic and microscopic morphology, thickness, surface roughness, chemical composition and structure of the coating were characterized by different characterization methods. The corrosion resistance of the film was studied by electrochemical and scanning Kelvin probe force microscopy. The results show that the addition of ZnO can significantly improve the compactness and corrosion resistance of the MAO coating, but the high concentration of ZnO will cause microcracks, which will reduce the corrosion resistance to a certain extent.

Findings

When the concentration of zinc oxide is 8 g/L, the compactness and corrosion resistance of the coating are the best, and the thickness of the coating is positively correlated with the concentration of ZnO.

Research limitations/implications

Too high concentration of ZnO reduces the performance of MAO coating.

Practical implications

The MAO coating prepared by adding ZnO has good corrosion resistance. Combined with organic coatings, it can be applied in corrosive marine environments, such as ship parts and hulls. To a certain extent, it can reduce the economic loss caused by corrosion.

Originality/value

The effect of ZnO on the corrosion resistance of MAO coating in electrolyte solution was studied systematically, and the conclusion was new to the common knowledge.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 12 April 2022

Jingbo Zhao, Yan Tao and Zhiming Sun

This paper aims to clarify voltage sourced converter’s (VSC’s) influence rules on the alternating current (AC) short-circuit current and identify the key factors, so as to propose…

131

Abstract

Purpose

This paper aims to clarify voltage sourced converter’s (VSC’s) influence rules on the alternating current (AC) short-circuit current and identify the key factors, so as to propose the short-circuit current suppression strategy.

Design/methodology/approach

This paper investigates the key factors which impact the short-circuit current supplied by the VSC based on the equivalent current source model. This study shows that the phase of the VSC equivalent current source is mainly affected by the type of fault, whereas the amplitude is mainly decided by the control mode, the amplitude limiter and the electrical distance. Based on the above influence mechanism, the dynamic limiter with short-circuit current limiting function is designed. The theoretical analysis is verified by simulations on PSCAD.

Findings

The short-circuit current feeding from VSC is closely related to the control mode and control parameters of the VSC, fault type at AC side and the electrical distance of the fault point. The proposed dynamic limiter can make VSC absorb more reactive power to suppress the short-circuit current.

Research limitations/implications

The dynamic limiter proposed in this paper is limited to suppress three-phase short-circuit fault current. The future work will focus more on improving and extending the dynamic limiter to the fault current suppression application in other fault scenarios.

Practical implications

The research results provide a reference for the design of protection system.

Originality/value

The key influence factors are conducive to put forward the measures to suppress the fault current, eliminate the risk of short-circuit current exceeding the standard and reduce the difficulty of protection design.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 28 March 2023

Yixuan Li, Yanfeng Chen, Bo Zhang, Dongyuan Qiu, Fan Xie and Chao Cheng

The purpose of this paper is to find a simpler model for the reactance components in the high-frequency range on the premise of ensuring the accuracy.

Abstract

Purpose

The purpose of this paper is to find a simpler model for the reactance components in the high-frequency range on the premise of ensuring the accuracy.

Design/methodology/approach

In this paper, based on the fractional calculus theory and the traditional integer-order model, a reactance model suitable for high frequency is constructed, and the mutation cross differential evolution algorithm is used to identify the parameters in the model.

Findings

By comparing the integer-order model, high-frequency fractional-order model and the actual impedance characteristic curve of inductance and capacitance, it is verified that the proposed model can more accurately reflect the high-frequency characteristics of inductance and capacitance. The simulation and experimental results show that the oscillator constructed based on the proposed model can analyze the frequency and output waveform of the oscillator more accurately.

Originality/value

The model proposed in this paper has a simple structure and contains only two parameters to be identified. At the same time, the model has high precision. The fitting errors of impedance curve and phase-frequency characteristic curve are less than 5%. Therefore, the proposed model is helpful to improve the simplicity and accuracy of circuit system analysis and design.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 December 2023

Ali Hashemi and Parsa Yazdanpanah Qaraei

This paper aims to present an accurate magnetic equivalent circuit for modeling the cylindrical electromagnet so that by analyzing it, the magnetic flux density in different parts…

Abstract

Purpose

This paper aims to present an accurate magnetic equivalent circuit for modeling the cylindrical electromagnet so that by analyzing it, the magnetic flux density in different parts of the electromagnet, as well as its lifting force, can be calculated.

Design/methodology/approach

The structure of the electromagnet is divided into parts that can be modeled by lumped element parameters. Mathematical equations for calculating these elements are presented and proved. The axial symmetry of the cylindrical electromagnet made it possible to use planar circuits for its modeling. To increase the accuracy of the proposed equivalent circuit, attention has been paid to the leakage flux as well as the nonlinear behavior of the ferromagnetic core. Also, the curvature of the magnetic flux path is considered in the calculation of the corner permeances of the core.

Findings

The magnetic flux density in different parts of the electromagnet was calculated using nodal analysis of the circuit and compared to the results of the finite element method. Also, a test bed was established to measure the lifting force of the electromagnet. Comparing the results shows a difference of less than 3% which indicate the good accuracy of the proposed circuit. In addition, due to the curvature of the flux path, there is a no-flux region in the center of the disk, the extent of which depends on the thickness of the disk and the diameter of the middle leg.

Originality/value

Magnetic equivalent circuit is a new contribution to analyze the cylindrical electromagnet and calculate its lifting force with good accuracy. The circuit lumped elements can be quickly calculated using mathematical equations and software such as MATLAB according to the actual path of the magnetic flux. Compared to other methods, the proposed circuit analyzes the electromagnet in a shorter period of time. This is the most important advantage of the proposed circuit model.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 April 2023

Atul Varshney and Vipul Sharma

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to…

Abstract

Purpose

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to Microstrip (MS) line transition for satellite and RADAR applications. It facilitates the realization of nonplanar (waveguide-based) circuits into planar form for easy integration with other planar (microstrip) devices, circuits and systems. This paper describes the design of a SIW to microstrip transition. The transition is broadband covering the frequency range of 8–12 GHz. The design and interconnection of microwave components like filters, power dividers, resonators, satellite dishes, sensors, transmitters and transponders are further aided by these transitions. A common planar interconnect is designed with better reflection coefficient/return loss (RL) (S11/S22 ≤ 10 dB), transmission coefficient/insertion loss (IL) (S12/S21: 0–3.0 dB) and ultra-wideband bandwidth on low profile FR-4 substrate for X-band and Ku-band functioning to interconnect modern era MIC/MMIC circuits, components and devices.

Design/methodology/approach

Two series of metal via (6 via/row) have been used so that all surface current and electric field vectors are confined within the metallic via-wall in SIW length. Introduced aerodynamic slots in tapered portions achieve excellent impedance matching and tapered junctions with SIW are mitered for fine tuning to achieve minimum reflections and improved transmissions at X-band center frequency.

Findings

Using this method, the measured IL and RLs are found in concord with simulated results in full X-band (8.22–12.4 GHz). RLC T-equivalent and p-equivalent electrical circuits of the proposed design are presented at the end.

Practical implications

The measurement of the prototype has been carried out by an available low-cost X-band microwave bench and with a Keysight E4416A power meter in the microwave laboratory.

Originality/value

The transition is fabricated on FR-4 substrate with compact size 14 mm × 21.35 mm × 1.6 mm and hence economical with IL lie within limits 0.6–1 dB and RL is lower than −10 dB in bandwidth 7.05–17.10 GHz. Because of such outstanding fractional bandwidth (FBW: 100.5%), the transition could also be useful for Ku-band with IL close to 1.6 dB.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 206