Search results

1 – 10 of 53
Article
Publication date: 17 July 2023

Zulfiqar Ali Raza, Aisha Rehman, Faiza Anwar and Naseer Ahmad

This study aims to investigate the effect of the copresence of ferrous (Fe2+) ions and sodium dodecyl sulfate (SDS) on the activity of an amylase enzyme during the desizing of…

35

Abstract

Purpose

This study aims to investigate the effect of the copresence of ferrous (Fe2+) ions and sodium dodecyl sulfate (SDS) on the activity of an amylase enzyme during the desizing of greige viscose fabric for potential industrial applications. The removal of starches is an essential step before processing the fabric for dyeing and finishing operations. The authors tend to accomplish it in eco-friendly and sustainable ways.

Design/methodology/approach

The experiments were designed under the Taguchi approach, and the results were analyzed using grey relational analysis to optimize the process. The textile properties of absorbency, reducing sugars, bending length, weight loss, Tegawa rating and tensile strength were assessed using the standard protocols. The control and optimized viscose specimens were investigated for certain surface chemical properties using advanced analytical techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA).

Findings

The results demonstrate that the Fe2+ concentration and process time were the main influencing factors in the amylolytic desizing of viscose fabric. The optimized process conditions were found to be 0.1 mm Fe2+ ions, 3 mm SDS, 80°C, 7 pH and 30 min process time. The copresence of Fe2+ ions and SDS promoted the biodesizing of viscose fabric. The SEM, Fourier transform infrared spectroscopy, XRD and TGA results demonstrated that the sizing agent has efficiently been removed from the fabric surface.

Practical implications

The amylase desizing of viscose fabric in the presence of certain metal ions and surfactants is a significant subject as the enzyme may face them due to their prevalence in the water systems. This could also support the biodesizing and bioscouring operations to be done in one bath, thus making the textile pretreatment process both economical and environmentally sustainable.

Originality/value

The authors found no report on the biodesizing of viscose fabric in the copresence of Fe2+ ions and the SDS surfactant under statistical multiresponse optimization. The biodesized viscose fabric has been investigated using both conventional and analytical approaches.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 January 2024

Ernest Mbamalu Ezeh, Ezeamaku U Luvia and Onukwuli O D

Gourd fibres (GF) are a natural biodegradable fibre material with excellent mechanical properties and high tensile strength. The use of natural fibres in composite materials has…

Abstract

Purpose

Gourd fibres (GF) are a natural biodegradable fibre material with excellent mechanical properties and high tensile strength. The use of natural fibres in composite materials has gained popularity in recent years due to their various advantages, including renewability, low cost, low density and biodegradability. Gourd fibre is one such natural fibre that has been identified as a potential reinforcement material for composites. However, it has low surface energy and hydrophobic nature, which makes it difficult to bond with matrix materials such as polyester. To overcome this problem, chemically adapted gourd fibre has been proposed as a solution. Chemical treatment is one of the most widely used methods to improve the properties of natural fibres. This research evaluates the feasibility and effectiveness of incorporating chemically adapted gourd fibre into polyester composites for industrial fabrication. The purpose of this study is to examine the application of chemically modified GF in the production of polyester composite engineering materials.

Design/methodology/approach

This work aims to evaluate the effectiveness of chemically adapted gourd fibre in improving the adhesion of gourd fibre with polyester resin in composite fabrication by varying the GF from 5 to 20 wt.%. The study involves the preparation of chemically treated gourd fibre through surface modification using sodium hydroxide (NaOH), permanganate (KMnO4) and acetic acid (CH3COOH) coupling agents. The mechanical properties of the modified fibre and composites were investigated. It was then characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to determine the changes in surface morphology and functional groups.

Findings

FTIR characterization showed that NaOH treatment caused cellulose depolymerization and caused a significant increase in the hydroxyl and carboxyl groups, showing improved surface functional groups; KMnO4 treatment oxidized the fibre surface and caused the formation of surface oxide groups; and acetic acid treatment induced changes that primarily affected the ester and hydroxyl groups. SEM study showed that NaOH treatment changed the surface morphology of the gourd fibre, introduced voids and reduced hydrophilic tendencies. The tensile strength of the modified gourd fibres increased progressively as the concentration of the modification chemicals increased compared to the untreated fibres.

Originality/value

This work presents the designed composite with density, mechanical properties and microstructure, showing remarkable improvements in the engineering properties. An 181.5% improvement in tensile strength and a 56.63% increase in flexural strength were got over that of the unreinforced polyester. The findings from this work will contribute to the understanding of the potential of chemically adapted gourd fibre as a reinforcement material for composites and provide insights into the development of sustainable composite materials.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 August 2023

Pankaj Naharwal, Mahesh Meena, Charul Somani, Neetu Kumari and Dinesh Kumar Yadav

This paper aims to critically review the isolation and chemistry of plant pigments.

72

Abstract

Purpose

This paper aims to critically review the isolation and chemistry of plant pigments.

Design/methodology/approach

A literature survey from 1974 to 2022 was carried out and studied thoroughly. The authors reviewed literature in various areas such as isolation methods and catalytic properties of pigments.

Findings

With vast growing research in the field of catalytic activities of various pigments like chlorophyll, anthocyanin and flavonoids, there is still scope for further research for the pigments such as Lycopene, carotenoids and xanthophyll as there has not been any significant work in this area.

Research limitations/implications

Plant pigments may be used as an ecofriendly catalyst for chemical reactions.

Practical implications

One can get the direction of pigment research.

Social implications

Plant pigments are natural and ecofriendly catalyst which can reduce the pollution.

Originality/value

This is an original work. This paper precisely depicts the advantages as well as disadvantages of the isolation techniques of pigments. This study also presents the chemistry of plant pigments.

Graphical abstract

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 September 2023

Lutamyo Nambela

The purpose of this study was to review the information on the scientific efforts and achievements in sustainable industrial textile applications of natural colourants. Then the…

Abstract

Purpose

The purpose of this study was to review the information on the scientific efforts and achievements in sustainable industrial textile applications of natural colourants. Then the paper suggests the ways of improving the industrial textile applications of plant-based colourants.

Design/methodology/approach

The literature on the chemistry, sources and extraction of plant-based natural colourants was reviewed. The reviewed information was analysed and synthesised to provide techniques for selecting sustainable extraction methods, possible sustainable textile applications of natural colourants and the challenges which hinder industrial textile applications of plant-based natural colourants. The ways of overcoming the challenges of the industrial textile applications of plant natural colourants were suggested. Lastly, the current situation of industrial application of natural dyes in textiles is presented.

Findings

Despite the scientific achievement to overcome the challenges of natural colourants for textiles, the global industrial application of natural colourants is still low. Inadequate knowledge of the dyers results into poor performance of the natural dyed textile. The natural dyed textiles are expensive due to the scarcity of raw materials for manufacturing of natural colourants. The selection of suitable extraction, application methods and type of substrate should consider the chemistry of the particular colourant. The society should be educated about the benefits of natural dyed textiles. Cultivation of colourant-bearing plants should be promoted to meet the industrial material demand.

Originality/value

The paper provides a synthesized collection of information about the source, chemistry, extraction, textile application and challenges of plant-based natural colourants. The reviewed information was analysed and synthesised to provide techniques for selecting sustainable extraction methods, possible sustainable textile applications of natural colourants and the challenges which hinder industrial textile applications of plant-based natural colourants. The ways of overcoming the challenges of the industrial textile applications of plant natural colourants were suggested.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Book part
Publication date: 14 December 2023

Nausheen Bibi Jaffur, Pratima Jeetah and Gopalakrishnan Kumar

The increasing accumulation of synthetic plastic waste in oceans and landfills, along with the depletion of non-renewable fossil-based resources, has sparked environmental…

Abstract

The increasing accumulation of synthetic plastic waste in oceans and landfills, along with the depletion of non-renewable fossil-based resources, has sparked environmental concerns and prompted the search for environmentally friendly alternatives. Biodegradable plastics derived from lignocellulosic materials are emerging as substitutes for synthetic plastics, offering significant potential to reduce landfill stress and minimise environmental impacts. This study highlights a sustainable and cost-effective solution by utilising agricultural residues and invasive plant materials as carbon substrates for the production of biopolymers, particularly polyhydroxybutyrate (PHB), through microbiological processes. Locally sourced residual materials were preferred to reduce transportation costs and ensure accessibility. The selection of suitable residue streams was based on various criteria, including strength properties, cellulose content, low ash and lignin content, affordability, non-toxicity, biocompatibility, shelf-life, mechanical and physical properties, short maturation period, antibacterial properties and compatibility with global food security. Life cycle assessments confirm that PHB dramatically lowers CO2 emissions compared to traditional plastics, while the growing use of lignocellulosic biomass in biopolymeric applications offers renewable and readily available resources. Governments worldwide are increasingly inclined to develop comprehensive bioeconomy policies and specialised bioplastics initiatives, driven by customer acceptability and the rising demand for environmentally friendly solutions. The implications of climate change, price volatility in fossil materials, and the imperative to reduce dependence on fossil resources further contribute to the desirability of biopolymers. The study involves fermentation, turbidity measurements, extraction and purification of PHB, and the manufacturing and testing of composite biopolymers using various physical, mechanical and chemical tests.

Details

Innovation, Social Responsibility and Sustainability
Type: Book
ISBN: 978-1-83797-462-7

Keywords

Article
Publication date: 8 March 2024

Georgy Sunny and T. Palani Rajan

The purpose of the study is to optimize the blending ratio of Arecanut and cotton fibers to create yarn with the best quality for various applications, particularly home…

Abstract

Purpose

The purpose of the study is to optimize the blending ratio of Arecanut and cotton fibers to create yarn with the best quality for various applications, particularly home furnishings. The study aims to determine the effect of different blend ratios on the physical and mechanical properties of the yarn.

Design/methodology/approach

The study involves blending Arecanut and cotton fibers in various ratios (90:10, 75:25, 50:50, 25:75 and 10:90) at two different yarn counts (10/1 and 5/1). Various physical and mechanical properties of the blended yarn are analyzed, including unevenness, coefficient of mass variation (cvm%), imperfection, hairiness, breaking strength, elongation, tenacity and breaking work.

Findings

The research findings suggest that the blend ratio of 10:90 (10% cotton and 90% Arecanut fiber) produced the best results in terms of physical and mechanical properties for both yarn counts. This blend ratio resulted in reduced unevenness, cvm% and imperfection, while also exhibiting good mechanical properties such as breaking strength, elongation, tenacity and breaking work. The blend with a higher concentration of cotton generally showed better properties due to the coarseness of Arecanut fiber. As the goal of the study was to determine the best blend ratio that included the most Arecanut fiber based on its physical and mechanical properties, which is suitable for home furnishing applications, 75:25 Areca cotton blend ratio of yarn count 5/1 proved to be the best.

Research limitations/implications

The study acknowledges that Arecanut fiber must be blended with other commercially used fibers like cotton due to its coarseness. While the study provides insights into optimizing blend ratios for home furnishings and packaging, further research may be needed to make the material suitable for clothing applications.

Practical implications

The research has practical implications for industries interested in utilizing Arecanut and cotton blends for various applications, such as home furnishings and packaging materials. It suggests that specific blend ratios can result in yarn with desirable properties for these purposes.

Social implications

The study mentions that the increased use of Arecanut fibers can benefit the growers of Arecanut, potentially providing economic opportunities for communities engaged in Arecanut farming.

Originality/value

The research explores the utilization of Arecanut fibers, an underutilized resource, in combination with cotton to create sustainable yarn. It assesses various blend ratios and their impact on yarn properties, contributing to the understanding of eco-friendly textile materials.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 December 2023

Prapti Behera, Kannan N., Priyodip Paul, Sanjukta Aravind and Balaji S.

The textile sector struggles with cotton stickiness from honeydew contamination. It hurts agriculture and marketability. This study aims to examine how bacterial enzymes could…

Abstract

Purpose

The textile sector struggles with cotton stickiness from honeydew contamination. It hurts agriculture and marketability. This study aims to examine how bacterial enzymes could reduce honeydew-contaminated cotton adherence in textile businesses sustainably.

Design/methodology/approach

Enzyme was extracted from bacteria isolated from the fermented bamboo shoots “Lung siej”. The enzyme was tested for α-glucosidase using p-nitrophenyl-α-D-glucopyranoside as a substrate. Design of experiments determined enzyme activity temperature and reaction time. Laboratory-prepared artificial honeydew was added to ginning mill cotton to show honeydew contamination. After enzyme treatment, sticky cotton was tested for microscopic examination, ultraviolet (UV), Benedict’s, Elsner colorimetric, high volume instrument (HVI) and viscosity tests.

Findings

The bacterial isolate is characterized as Lysinibacillus sp. as confirmed by 16S rRNA gene sequencing. The enzyme extracted was identified as α-glucosidase. The ideal temperature and reaction time for enzymatic activity were 32 °C and 35 min, respectively, using central composite design. The microscopic examination, UV test, Benedict’s test, Elsner colorimetric test, HVI test and viscosity test showed that bacterial enzyme treatment reduced cotton fiber adherence.

Originality/value

Although few patents have examined the effect of yeast enzymes, to the best of the authors’ knowledge, a bacterial enzyme is investigated for the first time to reduce the adhesion of honeydew-contaminated cotton.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 7 February 2024

Chinkle Kaur and Jasleen Kaur

Millets are ancient grains, following wheat, that have been a fundamental source of human sustenance. These are nutrient-rich small-seeded grains that have gained prominence and…

Abstract

Purpose

Millets are ancient grains, following wheat, that have been a fundamental source of human sustenance. These are nutrient-rich small-seeded grains that have gained prominence and admiration globally due to their super resilience in diverse climates and significant nutritional benefits. As millets are renowned for their nutritional richness, the demand for millet-based products increases. Hence, this paper aims in identifying the growing need for innovative processing techniques that not only preserve their nutritional content but also extend their shelf life.

Design/methodology/approach

In traditional times, heat was the only means of cooking and processing of the foods, but the amount of damage they used to cause to the sensorial and nutritional properties was huge. Millets’ sensitivity toward heat poses a challenge, as their composition is susceptible to disruption during various heat treatments and manufacturing processes. To cater to this drawback while ensuring the prolonged shelf life and nutrient preservation, various innovative approaches such as cold plasma, infrared technology and high hydrostatic pressure (HPP) processing are being widely used. These new methodologies aim on inactivating the microorganisms that have been developed within the food, providing the unprocessed, raw and natural form of nutrients in food products.

Findings

Among these approaches, nonthermal technology has emerged as a key player that prioritizes brief treatment periods and avoids the use of high temperatures. Nonthermal techniques (cold plasma, infrared radiation, HPP processing, ultra-sonication and pulsed electric field) facilitate the conservation of millet’s nutritional integrity by minimizing the degradation of heat-sensitive nutrients like vitamins and antioxidants. Acknowledging the potential applications and processing efficiency of nonthermal techniques, the food industry has embarked on substantial investments in this technology. The present study provides an in-depth exploration of the array of nonthermal technologies used in the food industry and their effects on the physical and chemical composition of diverse millet varieties.

Originality/value

Nonthermal techniques, compared to conventional thermal methods, are environmentally sound processes that contribute to energy conservation. However, these conveniences are accompanied by challenges, and this review not only elucidates these challenges but also focuses on the future implications of nonthermal techniques.

Article
Publication date: 28 March 2024

Monica Puri Sikka, Jameer Aslam Bargir and Samridhi Garg

Intense interest has been shown in creating new and effective biocide agents as a result of changes in bacterial isolates, bacterial susceptibility to antibiotics, an increase in…

Abstract

Purpose

Intense interest has been shown in creating new and effective biocide agents as a result of changes in bacterial isolates, bacterial susceptibility to antibiotics, an increase in patients with burns and wounds and the difficulty of treating infections and antimicrobial resistance. Woven, nonwoven and knitted materials are used to make dressings; however, nonwoven dressings are becoming more popular because of their softness and high absorption capacity. Additionally, textiles have excellent geometrical, physical and mechanical features including three-dimensional structure availability, air, vapor and liquid permeability, strength, extensibility, flexibility and diversity of fiber length, fineness and cross-sectional shapes. It is necessary to treat every burn according to international protocol and along with it has to focus on particular problems of patients and the best possible results.

Design/methodology/approach

The objective of this paper is to conduct a thorough examination of research pertaining to the utilization of textiles, as well as alternative materials and innovative techniques, in the context of burn wound dressings. Through a critical analysis of the findings, this study intends to provide valuable insights that can inform and guide future research endeavors in this field.

Findings

In the past years, there have been several dressings such as xeroform petrolatum gauze, silver-impregnated dressings, biological dressings, hydrocolloid dressings, polyurethane film dressings, silicon-coated nylon dressings, dressings for biosynthetic skin substitutes, hydrogel dressings, newly developed dressings, scaffold bandages, Sorbalgon wound dressing, negative pressure therapy, enzymatic debridement and high-pressure water irrigation developed for the fast healing of burn wounds.

Originality/value

This research conducts a thorough analysis of the role of textiles in modern burn wound dressings.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 2 April 2024

Shilpi Aggarwal

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial…

Abstract

Purpose

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial attention in food, pharmaceutical, textile, cosmetics, etc. owing to their health and environmental benefits. The present study aims to focus on the elimination of the use of synthetic dyes and provides brief information about natural dyes, their sources, extraction procedures with characterization and various advantages and disadvantages.

Design/methodology/approach

In producing natural colors, extraction and purification are essential steps. Various conventional methods used till date have a low yield, as these consume a lot of solvent volume, time, labor and energy or may destroy the coloring behavior of the actual molecules. The establishment of proper characterization and certification protocols for natural dyes would improve the yielding of natural dyes and benefit both producers and users.

Findings

However, scientists have found modern extraction methods to obtain maximum color yield. They are also modifying the fabric surface to appraise its uptake behavior of color. Various extraction techniques such as solvent, aqueous, enzymatic and fermentation and extraction with microwave or ultrasonic energy, supercritical fluid extraction and alkaline or acid extraction are currently available for these natural dyes and are summarized in the present review article.

Originality/value

If natural dye availability can be increased by the different extraction measures and the cost of purified dyes can be brought down with a proper certification mechanism, there is a wide scope for the adoption of these dyes by small-scale dyeing units.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 53