Search results

1 – 10 of over 3000
Article
Publication date: 26 March 2024

Hesam Ketabdari, Amir Saedi Daryan, Nemat Hassani and Mohammad Safi

In this paper, the seismic behavior of the gusset plate moment connection (GPMC) exposed to the post-earthquake fire (PEF) is investigated.

Abstract

Purpose

In this paper, the seismic behavior of the gusset plate moment connection (GPMC) exposed to the post-earthquake fire (PEF) is investigated.

Design/methodology/approach

For this purpose, for the sake of verification, first, a numerical model is built using ABAQUS software and then exposed to earthquakes and high temperatures. Afterward, the effects of a series of parameters, such as gusset plate thickness, gap width, steel grade, vertical load value and presence of the stiffeners, are evaluated on the behavior of the connection in the PEF conditions.

Findings

Based on the results obtained from the parametric study, all parameters effectively played a role against the seismic loads, although, when exposed to fire, it was found that the vertical load value and presence of the stiffener revealed a great contribution and the other parameters could not significantly affect the connection performance. Finally, to develop the modeling and further study the performance of the connection, the 4 and 8-story frames are subjected to 11 accelerograms and 3 different fire scenarios. The findings demonstrate that high temperatures impose rotations on the structure, such that the story drifts were changed compared to the post-earthquake drift values.

Originality/value

The obtained results can be used by engineers to design the GPMC for the combined action of earthquake and fire.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 6 February 2024

Andrea Lucherini and Donatella de Silva

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings…

Abstract

Purpose

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings are particularly complex materials to be modelled and predicted, which can be extremely useful especially for performance-based fire safety designs. In addition, many parameters influence their performance, and this challenges the definition and quantification of their material properties. Several approaches and models of various complexities are proposed in the literature, and they are reviewed and analysed in a critical literature review.

Design/methodology/approach

Analytical, finite-difference and finite-element methods for modelling intumescent coatings are compared, followed by the definition and quantification of the main physical, thermal, and optical properties of intumescent coatings: swelled thickness, thermal conductivity and resistance, density, specific heat capacity, and emissivity/absorptivity.

Findings

The study highlights the scarce consideration of key influencing factors on the material properties, and the tendency to simplify the problem into effective thermo-physical properties, such as effective thermal conductivity. As a conclusion, the literature review underlines the lack of homogenisation of modelling approaches and material properties, as well as the need for a universal modelling method that can generally simulate the performance of intumescent coatings, combine the large amount of published experimental data, and reliably produce fire-safe performance-based designs.

Research limitations/implications

Due to their limited applicability, high complexity and little comparability, the presented literature review does not focus on analysing and comparing different multi-component models, constituted of many model-specific input parameters. On the contrary, the presented literature review compares various approaches, models and thermo-physical properties which primarily focusses on solving the heat transfer problem through swelling intumescent systems.

Originality/value

The presented literature review analyses and discusses the various modelling approaches to describe and predict the behaviour of swelling intumescent coatings as fire protection for structural materials. Due to the vast variety of available commercial products and potential testing conditions, these data are rarely compared and combined to achieve an overall understanding on the response of intumescent coatings as fire protection measure. The study highlights the lack of information and homogenisation of various modelling approaches, and it underlines the research needs about several aspects related to the intumescent coating behaviour modelling, also providing some useful suggestions for future studies.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 3 July 2024

Karthikeyan Marappan, M.P. Jenarthanan, Ghousiya Begum K and Venkatesan Moorthy

This paper aims to find the effective 3D printing process parameters based on mechanical characteristics such as tensile strength and hardness of poly lactic acid (PLA)/carbon…

Abstract

Purpose

This paper aims to find the effective 3D printing process parameters based on mechanical characteristics such as tensile strength and hardness of poly lactic acid (PLA)/carbon fibre composites (CF-PLA) by implementing intelligent frameworks.

Design/methodology/approach

The experiment trials are conducted based on design of experiments (DoE) using Taguchi L9 orthogonal array with three factors (speed, infill % and pattern type) and three levels. The factors have been optimized by solving the regression equation which is obtained from analysis of variance (ANOVA). The contour plots are generated by response surface methodology (RSM). The influencing parameters are found by using Box–Behnken design. The second order response surface model demonstrated the optimal combination of input parameters for higher tensile strength and hardness.

Findings

The influencing parameters are found by using Box–Behnken design. The second order response surface model demonstrated the optimal combination of input parameters for higher tensile strength and hardness. The results obtained from RSM are also confirmed by implementing the machine learning classifiers, such as logistic regression, ridge classifier, random forest, K nearest neighbour and support vector classifier (SVC). The results show that the SVC can predict the optimized process parameters with an accuracy of 95.65%.

Originality/value

3D printing parameters which are considered in this work such as pattern types for PLA/CF-PLA composites based on intelligent frameworks has not been attempted previously.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 September 2023

Karrar Hussein, Habibollah Akbari, Rassoul Noorossana and Rostom Yadegari

This study aims to investigate the effects of process input parameters (welding current, welding time, electrode pressure and holding time) on the output responses (nugget…

46

Abstract

Purpose

This study aims to investigate the effects of process input parameters (welding current, welding time, electrode pressure and holding time) on the output responses (nugget diameter, peak load and indentation) that control the mechanical properties and quality of the joints in dissimilar resistance spot welding (RSW) for the third generation of advanced high-strength steel (AHSS) quenching and partitioning (Q&P980) and (SPFC780Y) high-strength steel spot welds.

Design/methodology/approach

Design of experiment approach with two level factors and center points was adopted. Destructive peel and shear tensile strengths were used to measure the responses. The significant factors were determined using analysis of variance implemented by Minitab 18 software. Finally, multiresponse optimization was carried out using the desirability function analysis method.

Findings

Holding time was the most significant factor influencing nugget diameter, whereas welding current had the greatest impact on peak load and indentation. Multiresponse optimization revealed that the optimal settings were a welding current of 12.5 KA, welding time of 18 cycles, electrode pressure of 420 Kgf and holding time of 10 cycles. These settings produced a nugget diameter of 8.0 mm, a peak load of 35.15 KN and an indentation of 22.5%, with a composite desirability function of 0.764.

Originality/value

This study provides an effective approach for multiple response optimization to the mechanical behavior of RSW joints, even though there have been few studies on the third generation of AHSS joints and none on the dissimilar joints of the materials used in this study.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 17 September 2024

Dukun Xu, Yimin Deng and Haibin Duan

This paper aims to develop a method for tuning the parameters of the active disturbance rejection controller (ADRC) for fixed-wing unmanned aerial vehicles (UAVs). The bald eagle…

Abstract

Purpose

This paper aims to develop a method for tuning the parameters of the active disturbance rejection controller (ADRC) for fixed-wing unmanned aerial vehicles (UAVs). The bald eagle search (BES) algorithm has been improved, and a cost function has been designed to enhance the optimization efficiency of ADRC parameters.

Design/methodology/approach

A six-degree-of-freedom nonlinear model for a fixed-wing UAV has been developed, and its attitude controller has been formulated using the active disturbance rejection control method. The parameters of the disturbance rejection controller have been fine-tuned using the collaborative mutual promotion bald eagle search (CMP-BES) algorithm. The pitch and roll controllers for the UAV have been individually optimized to obtain the most effective controller parameters.

Findings

Inspired by the salp swarm algorithm (SSA), the interaction among individual eagles has been incorporated into the CMP-BES algorithm, thereby enhancing the algorithm's exploration capability. The efficient and accurate optimization ability of the proposed algorithm has been demonstrated through comparative experiments with genetic algorithm, particle swarm optimization, Harris hawks optimization HHO, BES and modified bald eagle search algorithms. The algorithm's capability to solve complex optimization problems has been further proven by testing on the CEC2017 test function suite. A transitional function for fitness calculation has been introduced to accelerate the ability of the algorithm to find the optimal parameters for the ADRC controller. The tuned ADRC controller has been compared with the classical proportional-integral-derivative (PID) controller, with gust disturbances introduced to the UAV body axis. The results have shown that the tuned ADRC controller has faster response times and stronger disturbance rejection capabilities than the PID controller.

Practical implications

The proposed CMP-BES algorithm, combined with a fitness function composed of transition functions, can be used to optimize the ADRC controller parameters for fixed-wing UAVs more quickly and effectively. The tuned ADRC controller has exhibited excellent robustness and disturbance rejection capabilities.

Originality/value

The CMP-BES algorithm and transitional function have been proposed for the parameter optimization of the active disturbance rejection controller for fixed-wing UAVs.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 January 2022

Zeinab Rahimi Rise and Mohammad Mahdi Ershadi

This paper aims to analyze the socioeconomic impacts of infectious diseases based on uncertain behaviors of social and effective subsystems in the countries. The economic impacts…

Abstract

Purpose

This paper aims to analyze the socioeconomic impacts of infectious diseases based on uncertain behaviors of social and effective subsystems in the countries. The economic impacts of infectious diseases in comparison with predicted gross domestic product (GDP) in future years could be beneficial for this aim along with predicted social impacts of infectious diseases in countries.

Design/methodology/approach

The proposed uncertain SEIAR (susceptible, exposed, infectious, asymptomatic and removed) model evaluates the impacts of variables on different trends using scenario base analysis. This model considers different subsystems including healthcare systems, transportation, contacts and capacities of food and pharmaceutical networks for sensitivity analysis. Besides, an adaptive neuro-fuzzy inference system (ANFIS) is designed to predict the GDP of countries and determine the economic impacts of infectious diseases. These proposed models can predict the future socioeconomic trends of infectious diseases in each country based on the available information to guide the decisions of government planners and policymakers.

Findings

The proposed uncertain SEIAR model predicts social impacts according to uncertain parameters and different coefficients appropriate to the scenarios. It analyzes the sensitivity and the effects of various parameters. A case study is designed in this paper about COVID-19 in a country. Its results show that the effect of transportation on COVID-19 is most sensitive and the contacts have a significant effect on infection. Besides, the future annual costs of COVID-19 are evaluated in different situations. Private transportation, contact behaviors and public transportation have significant impacts on infection, especially in the determined case study, due to its circumstance. Therefore, it is necessary to consider changes in society using flexible behaviors and laws based on the latest status in facing the COVID-19 epidemic.

Practical implications

The proposed methods can be applied to conduct infectious diseases impacts analysis.

Originality/value

In this paper, a proposed uncertain SEIAR system dynamics model, related sensitivity analysis and ANFIS model are utilized to support different programs regarding policymaking and economic issues to face infectious diseases. The results could support the analysis of sensitivities, policies and economic activities.

Highlights:

  • A new system dynamics model is proposed in this paper based on an uncertain SEIAR model (Susceptible, Exposed, Infectious, Asymptomatic, and Removed) to model population behaviors;

  • Different subsystems including healthcare systems, transportation, contacts, and capacities of food and pharmaceutical networks are defined in the proposed system dynamics model to find related sensitivities;

  • Different scenarios are analyzed using the proposed system dynamics model to predict the effects of policies and related costs. The results guide lawmakers and governments' actions for future years;

  • An adaptive neuro-fuzzy inference system (ANFIS) is designed to estimate the gross domestic product (GDP) in future years and analyze effects of COVID-19 based on them;

  • A real case study is considered to evaluate the performances of the proposed models.

A new system dynamics model is proposed in this paper based on an uncertain SEIAR model (Susceptible, Exposed, Infectious, Asymptomatic, and Removed) to model population behaviors;

Different subsystems including healthcare systems, transportation, contacts, and capacities of food and pharmaceutical networks are defined in the proposed system dynamics model to find related sensitivities;

Different scenarios are analyzed using the proposed system dynamics model to predict the effects of policies and related costs. The results guide lawmakers and governments' actions for future years;

An adaptive neuro-fuzzy inference system (ANFIS) is designed to estimate the gross domestic product (GDP) in future years and analyze effects of COVID-19 based on them;

A real case study is considered to evaluate the performances of the proposed models.

Details

Journal of Economic and Administrative Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2054-6238

Keywords

Article
Publication date: 27 August 2024

RamReddy Chetteti, Sweta   and Pranitha Janapatla

This study aims to enhance heat transfer efficiency while minimizing friction factor and entropy generation in the flow of Nickel zinc ferrite (NiZnFe2O4) nanoparticles suspended…

Abstract

Purpose

This study aims to enhance heat transfer efficiency while minimizing friction factor and entropy generation in the flow of Nickel zinc ferrite (NiZnFe2O4) nanoparticles suspended in multigrade 20W-40 motor oil (as specified by the Society of Automotive Engineers). The investigation focuses on the effects of the melting process, nonspherical particle shapes, thermal dispersion and viscous dissipation on the nanofluid flow.

Design/methodology/approach

The fundamental governing equations are transformed into a set of similarity equations using Lie group transformations. The resulting set of equations is numerically solved using the spectral local linearization method. Additionally, sensitivity analysis using response surface methodology (RSM) is conducted to evaluate the influence of key parameters on response function.

Findings

Higher dispersion reduces entropy production. Needle-shaped particles significantly enhance heat transfer by 27.65% with melting and reduce entropy generation by 45.32%. Increasing the Darcy number results in a reduction of friction by 16.06%, lower entropy by 31.72% and an increase in heat transfer by 17.26%. The Nusselt number is highly sensitive to thermal dispersion across melting and varying volume fraction parameters.

Originality/value

This study addresses a significant research gap by exploring the combined effects of melting, particle shapes and thermal dispersion on nanofluid flow, which has not been thoroughly investigated before. The focus on practical applications such as fuel cells, material processing, biomedicine and various cooling systems underscores its relevance to sectors such as nuclear reactors, tumor treatments and manufacturing. The incorporation of RSM for friction factor analysis introduces a unique dimension to the research, offering novel insights into optimizing nanofluid performance under diverse conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 September 2024

Muhammad Faisal, Iftikhar Ahmad, Qazi Zan-Ul-Abadin, Irfan Anjum Badruddin and Mohamed Hussien

This study aims to explore entropy evaluation in the bi-directional flow of Casson hybrid nanofluids within a stagnated domain, a topic of significant importance for optimizing…

Abstract

Purpose

This study aims to explore entropy evaluation in the bi-directional flow of Casson hybrid nanofluids within a stagnated domain, a topic of significant importance for optimizing thermal systems. The aim is to investigate the behavior of unsteady, magnetized and laminar flow using a parametric model based on the thermo-physical properties of alumina and copper nanoparticles.

Design/methodology/approach

The research uses boundary layer approximations and the Keller-box method to solve the derived ordinary differential equations, ensuring numerical accuracy through convergence and stability analysis. A comparison benchmark has been used to authenticate the accuracy of the numerical outcomes.

Findings

Results indicate that increasing the Casson fluid parameter (ranging from 0.1 to 1.0) reduces velocity, the Bejan number decreases with higher bidirectional flow parameter (ranging from 0.1 to 0.9) and the Nusselt number increases with higher nanoparticle concentrations (ranging from 1% to 4%).

Research limitations/implications

This study has limitations, including the assumption of laminar flow and the neglect of possible turbulent effects, which could be significant in practical applications.

Practical implications

The findings offer insights for optimizing thermal management systems, particularly in industries where precise control of heat transfer is crucial. The Keller-box simulation method proves to be effective in accurately predicting the behavior of such complex systems, and the entropy evaluation aids in assessing thermodynamic irreversibilities, which can enhance the efficiency of engineering designs.

Originality/value

These findings provide valuable insights into the thermal management of hybrid nanofluid systems, marking a novel contribution to the field.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 April 2024

Ali Hassanzadeh, Ebrahim Ghorbani-Kalhor, Khalil Farhadi and Jafar Abolhasani

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Abstract

Purpose

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Design/methodology/approach

Sodium silicate is adopted as a substrate for GO and AgNPs with positive charge are used as modifiers. The synthesized nanocomposite is characterized by FTIR, FESEM, EDS, BET and XRD techniques. Then, some of the most effective parameters on the removal of CR and MB dyes such as solution pH, sorbent dose, adsorption equilibrium time, primary dye concentration and salt effect are optimized using the spectrophotometry technique.

Findings

The authors successfully achieved notable maximum adsorption capacities (Qmax) of CR and MB, which were 41.15 and 37.04 mg g−1, respectively. The required equilibrium times for maximum efficiency of the developed sorbent were 10 and 15 min for CR and MB dyes, respectively. Adsorption equilibrium data present a good correlation with Langmuir isotherm, with a correlation coefficient of R2 = 0.9924 for CR and R2 = 0.9904 for MB, and kinetic studies prove that the dye adsorption process follows pseudo second-order models (CR R2 = 0.9986 and MB R2 = 0.9967).

Practical implications

The results showed that the proposed mechanism for the function of the developed sorbent in dye adsorption was based on physical and multilayer adsorption for both dyes onto the active sites of non-homogeneous sorbent.

Originality/value

The as-prepared nano-adsorbent has a high ability to remove both cationic and anionic dyes; moreover, to the high efficiency of the adsorbent, it has been tried to make its synthesis steps as simple as possible using inexpensive and available materials.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 August 2024

Abdurrahim Temiz

This study aims to examine the impact of specific printing factors, such as layer height, line width and build orientation, on the overall quality of fused filament fabrication…

Abstract

Purpose

This study aims to examine the impact of specific printing factors, such as layer height, line width and build orientation, on the overall quality of fused filament fabrication (FFF) 3D printed structures. The project also intends to use response surface methodology (RSM) to maximize ultimate tensile strength (UTS) while lowering surface roughness and printing time.

Design/methodology/approach

This study used an FFF printer to fabricate samples of polylactic acid (PLA), which were then subjected to assessments of tensile strength and surface roughness. A tensile test was conducted under standardized conditions according to the ASTM D638 standard test method using the AG-50 kN Shimadzu Autograph. The Mitutoyo Surftest SJ-210, which utilizes a needle-tipped inductive method, was used to determine surface roughness. RSM was used for optimization.

Findings

This work provides useful insights into how the printing parameters affect FFF 3D printed structures, which may be used to optimize the printing process and improve PLA-based 3D printed products' qualities. The determined optimal values for building orientation, layer height and line width were 0°, 0.1 mm and 0.6 mm, respectively. The total desirability value of 0.80 implies desirable outcomes, and good agreement between experimental and projected response values supports the suggested models.

Originality/value

Previous RSM studies for 3D printing parameter optimization focused on mechanical properties or surface aspects, however, few examined multiple responses and their interactions. This study emphasizes the relevance of FFF parameters like line width, which are often overlooked but can dramatically impact printing quality. Mechanical properties, surface quality and printing time are integrated to comprehend optimization holistically.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 3000