Search results

1 – 10 of 673
Article
Publication date: 5 January 2015

Belli Zoubida and Mohamed Rachid Mekideche

Reducing eddy current losses in magnets of electrical machines can be obtained by means of several techniques. The magnet segmentation is the most popular one. It imposes the…

Abstract

Purpose

Reducing eddy current losses in magnets of electrical machines can be obtained by means of several techniques. The magnet segmentation is the most popular one. It imposes the least restrictions on machine performances. This paper investigates the effectiveness of the magnet circumferential segmentation technique to reduce these undesirable losses. The full and partial magnet segmentation are both studied for a frequency range from few Hz to a dozen of kHz. To increase the efficiency of these techniques to reduce losses for any working frequency, an optimization strategy based on coupling of finite elements analysis and genetic algorithm is applied. The purpose of this paper is to define the parameters of the total and partial segmentation that can ensure the best reduction of eddy current losses.

Design/methodology/approach

First, a model to analyze eddy current losses is presented. Second, the effectiveness of full and partial magnet circumferential segmentation to reduce eddy loss is studied for a range of frequencies from few Hz to a dozen of kHz. To achieve these purposes a 2-D finite element model is developed under MATLAB environment. In a third step of the work, an optimization process is applied to adjust the segmentation design parameters for best reduction of eddy current losses in case of surface mounted permanent magnets synchronous machine.

Findings

In case of the skin effect operating, both full and partial magnet segmentations can lead to eddy current losses increases. Such deviations of magnet segmentation techniques can be avoided by an appropriate choice of their design parameters.

Originality/value

Few works are dedicated to investigate partial magnet segmentation for eddy current losses reduction. This paper studied the effectiveness and behaviour of partial segmentation for different frequency ranges. To avoid eventual anomalies related to the skin effect an optimization process based on the association of the finite elements analysis to genetic algorithm method is adopted.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 May 2011

Roman Vogel and Stefan Kulig

Operation of synchronous machines in the power range of several 10 MW with variable speed up to 7,000 rpm using a current converter is, thanks to the development of power…

Abstract

Purpose

Operation of synchronous machines in the power range of several 10 MW with variable speed up to 7,000 rpm using a current converter is, thanks to the development of power switches, possible and economically reasonable today. However, current harmonics, produced by converter, generate additional losses, especially eddy current losses on the rotor surface are produced by the converter, which strongly depend on the rotor permeability. The purpose of this paper is to show that an accurate machine modeling is required, in order to consider the nonlinearity of electromagnetic processes inside.

Design/methodology/approach

This paper concentrates on the determination of the rotor surface losses in a three‐phase turbogenerator feeding a current converter. Saturation of rotor steel is taken into account using a transient finite element method model of the machine, coupled with a converter model.

Findings

A detailed analysis of the damper currents and losses in a turbogenerator operating with a frequency converter is presented. The effectivenes of damper winding modifications, concerning the eddy current loss reduction in the rotor surface, is depicted.

Practical implications

The introduced modelling technique presents an accurate electromagnetic modelling of an I‐converter‐fed synchronous generator with massiv poles, which is fed by a current converter and so has to sustain additional eddy current losses in the rotor surface. In this way, the amount and distribution of these losses are evaluated more accurately which allows a more efficient design of the damper winding as well as machine cooling system.

Originality/value

Some researchers have made contributions to the analysis of current converter‐fed synchronous machine, regarding terminal behaviour of the machine. This paper focuses on eddy current losses on the rotor surface, considering the time and space dependent saturation aspect in the machine, particularly in the rotor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 20 August 2018

Athanasios Sarigiannidis, Minos Beniakar and Antonios Kladas

This paper aims to introduce a computationally efficient hybrid analytical–finite element (FE) methodology for loss evaluation in electric vehicle (EV) permanent magnet (PM…

Abstract

Purpose

This paper aims to introduce a computationally efficient hybrid analytical–finite element (FE) methodology for loss evaluation in electric vehicle (EV) permanent magnet (PM) traction motor applications. In this class of problems, eddy current losses in PMs and iron laminations constitute an important part of overall drive losses, representing a key design target.

Design/methodology/approach

Both surface mounted permanent magnet (SMPM) and double-layer interior permanent magnet (IPM) motor topologies are considered. The PM eddy losses are calculated by using analytical solutions and Fourier harmonic decomposition. The boundary conditions are based on slot opening magnetic field strength tangential component in the air gap in the SMPM topology case, whereas the numerically evaluated normal flux density variation on the surface of the outer PM is implemented in the IPM case. Combined analytical–loss evaluation technique has been verified by comparing its results to a transient magnetodynamic two-dimensional FE model ones.

Findings

The proposed loss evaluation technique calculated the total power losses for various operating conditions with low computational cost, illustrating the relative advantages and drawbacks of each motor topology along a typical EV operating cycle. The accuracy of the method was comparable to transient FE loss evaluation models, particularly around nominal speed.

Originality/value

The originality of this paper is based on the development of a fast and accurate PM eddy loss model for both SMPM and IPM motor topologies for traction applications, combining effectively both analytical and FE techniques.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 January 2015

Asma Masmoudi and Ahmed Masmoudi

The purpose of this paper is to compare the study between two topologies of fractional-slot permanent-magnet machines such that: double-layer topology and single-layer one. The…

Abstract

Purpose

The purpose of this paper is to compare the study between two topologies of fractional-slot permanent-magnet machines such that: double-layer topology and single-layer one. The comparison considers the assessment of the iron loss in the laminated cores of the magnetic circuit as well as in the permanent magnets (PMs) for constant torque and flux weakening ranges.

Design/methodology/approach

The investigation of the hysteresis and eddy-current loss has been carried out using 2D transient FEA models.

Findings

It has been found that the stator iron losses are almost the same for both topologies. Whereas, the single-layer topology is penalized by higher iron loss especially the eddy-current ones taking place in the PMs. This is due to their denser harmonic content of the armature air gap MMF spatial repartition.

Originality/value

The analysis of the iron loss maps in different parts of each machine including stator and rotor laminations as well as the PMs, in one hand, and the investigation of their variation with respect to the speed, in the other hand, represent the major contribution of this work.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 November 2016

Hongbo Qiu, Wenfei Yu, Bingxia Tang, Weili Li, Cunxiang Yang and Yanfeng Wang

Taking a 2,000 r/min 10 kW permanent magnet motor as an example, the purpose of this paper is to study the influence of driving modes on the performance of permanent magnet motor…

Abstract

Purpose

Taking a 2,000 r/min 10 kW permanent magnet motor as an example, the purpose of this paper is to study the influence of driving modes on the performance of permanent magnet motor at limit conditions, and researched the variation mechanism of motor performance influenced by different driving modes.

Design/methodology/approach

A two-dimensional electromagnetic field model of the permanent magnet motor was established, and a rectangular-wave driving circuit was built. By using the finite element method, the electromagnetic field, current, harmonic content and eddy current loss were calculated when the motor operated at rated load and limit load. On the basis of the motor loss calculation, the temperature field of the motor operating at rated condition and limit condition was researched, and the factors that influence motor limit overload capacity were analyzed. By analyzing the motor loss variation at different load conditions, the change mechanism of the motor temperature field was determined further. Combined with the related experiments, the correctness of the above analysis was verified.

Findings

Permanent magnet synchronous motor (PMSM) driven by sine wave is better compared with brushless direct current motor (BLDCM) driven by rectangular wave in reducing the magnetic field harmonics, motor losses and optimizing the temperature distribution in the motor. The method driven by sine wave could improve the motor output performance including the motor efficiency and the motor overload capacity. The winding temperature is the most important factor that limits the output capability of PMSM operating for a long time. However, because of the large rotor eddy current losses, the permanent magnet temperature is the most important factor that limits the output capability of BLDCM operating for a long time.

Practical implications

The influence of driving modes on the motor magnetic field, losses and temperature distribution, efficiency and overload capacity was determined, and the influence mechanism was also analyzed. Combined with the analysis of the electromagnetic and temperature fields, the advantages of different driving modes were presented. This study could provide an important basis for the design of permanent magnet motors with different driving modes, and it also provides reference for the application of permanent magnet motor.

Originality/value

This paper presents the influence of driving modes on permanent magnet motors. The limit output capacity of the motor with different driving modes was studied, and the key factors limiting the motor output capability were obtained.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 April 2014

Jinlin Gong, Bassel Aslan, Frédéric Gillon and Eric Semail

The purpose of this paper is to apply some surrogate-assisted optimization techniques in order to improve the performances of a five-phase permanent magnet machine in the context…

Abstract

Purpose

The purpose of this paper is to apply some surrogate-assisted optimization techniques in order to improve the performances of a five-phase permanent magnet machine in the context of a complex model requiring computation time.

Design/methodology/approach

An optimal control of four independent currents is proposed in order to minimize the total losses with the respect of functioning constraints. Moreover, some geometrical parameters are added to the optimization process allowing a co-design between control and dimensioning.

Findings

The optimization results prove the remarkable effect of using the freedom degree offered by a five-phase structure on iron and magnets losses. The performances of the five-phase machine with concentrated windings are notably improved at high speed (16,000 rpm).

Originality/value

The effectiveness of the method allows solving the challenge which consists in taking into account inside the control strategy the eddy-current losses in magnets and iron. In fact, magnet losses are a critical point to protect the machine from demagnetization in flux-weakening region.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 May 2017

Irina Yu. Kruchinina, Yuvenaliy Khozikov, Alexandr Liubimtsev and Valentina Paltceva

The purpose of this paper is the development of a new numerical method for the calculation of the air-gap magnetic flux harmonics in synchronous machines with permanent magnet…

Abstract

Purpose

The purpose of this paper is the development of a new numerical method for the calculation of the air-gap magnetic flux harmonics in synchronous machines with permanent magnet (PM) excitation. The harmonic analysis results are used as input data for the eddy-current loss calculation and for the rotor heating evaluation.

Design/methodology/approach

The method is based on the finite element analysis (FEA). The model takes into account toothed stator design, rotor asymmetrical magnetic reluctance and saturation. At first, a series of static DC magnetic (magnetostatic) simulations is run. Each problem corresponds to specific rotor position and the momentary stator winding currents. The Fourier analysis performed for each problem yields the harmonic spectrum variation in time. Then, a series of AC magnetic (time-harmonic) simulations is run. Each problem corresponds to a specific harmonic. The result is the eddy-current losses distribution. After total loss is calculated, the heat transfer analysis is conducted.

Findings

The analysis reveals that 90 per cent of losses are located in the sleeve that holds PMs together. Rotor eccentricity brings even harmonics of low magnitude that have little impact on heating.

Originality/value

In general, the study requires transient electromagnetic analysis with motion. The purposed method allows to simplify the problem. The method is based on static and quasi-static (time-harmonic) problems simulation. It is fast and highly automated. The method allows simultaneous taking into account of tooth-order harmonics, stator winding harmonics and eccentricity for heating calculation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Yi Sui, Ping Zheng, Peilun Tang, Fan Wu and Pengfei Wang

The purpose of this paper is to investigate a five-phase permanent-magnet synchronous machine (PMSM) that features high-power density and high-fault-tolerant capability for…

Abstract

Purpose

The purpose of this paper is to investigate a five-phase permanent-magnet synchronous machine (PMSM) that features high-power density and high-fault-tolerant capability for electric vehicles (EVs).

Design/methodology/approach

The five-phase 20-slot/18-pole PMSM is designed by finite-element method. Two typical rotor structures which include Halbach array and rotor eccentricity are compared to achieve sinusoidal back electromotive force (EMF). The influence of slot dimensions on leakage inductance and short-circuit current is analyzed. The method to reduce eddy current loss of permanent magnets (PMs) is investigated. The machine performances under both healthy and fault conditions are evaluated. Finally, thermal behavior of the machine is studied by Ansys.

Findings

With both no-load and load performances considered, rotor eccentricity is proposed to reduce the harmonic contents of EMF. Increasing slot leakage inductance is an effective way to limit the short-circuit current. By segmenting PMs in circumferential direction, the PM eddy current loss is reduced and the machine efficiency is improved. With proper fault-tolerant control strategy, acceptable torque performance can be achieved under fault conditions. The proposed machine can safely operate under Class F insulation.

Originality/value

So far, many researches focus on multiphase PMSMs used in aviation fields, such as fuel pump and electric actuator. Differing from PMSMs used in aviation applications, machines for EVs require characteristics like wide speed ranges and variable operating conditions. Hence, this paper proposes a five-phase 20-slot/18-pole PMSM for EVs. The proposed design methodology is applicable to multiphase PMSMs with different slot/pole combinations.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 August 2007

Damijan Miljavec and Bogomir Zidarič

This study aims to calculate eddy current losses in permanent magnets of BLDC machine in the generator mode of operation with no‐load.

Abstract

Purpose

This study aims to calculate eddy current losses in permanent magnets of BLDC machine in the generator mode of operation with no‐load.

Design/methodology/approach

Stator slot openings and special design of the stator poles cause changes in the magnetic flux density changes in permanent magnets. The stator windings are not connected to an outer source and no currents flow in them. The induced eddy currents in permanent magnets are dependent solely on the stator geometry. Analytical approach to calculate the eddy current density distribution in permanent magnets is based on known distribution of magnetic flux density in the air‐gap of BLDC. The magnetic flux density distribution is obtained from magneto‐static finite element model of BLDC. For verification of analytical approach the eddy current density distribution in permanent magnets is also calculated by magneto‐transient finite element model of BLDC.

Findings

The eddy current losses in PM obtained with the FEM indicate additional heating of the BLDC machine at high rotational speeds even when it operates at no load. When some special stator designs (the side of the air gap) are needed, the losses in PMs and their heating increase.

Research limitations/implications

To get more precise results, the proposed analytical method for eddy current losses calculation in PM should be further analyzed. More geometric parameters of the BLDC design should be introduced to analytical formulations, especially those which affect variations in reluctance.

Practical implications

When some special stator designs (the side of the air gap) are needed, the losses in PMs should be observed. This is particularly recommended at higher rotation velocities. Any kind of magnetic flux density change induces eddy currents and together with them also power losses. These losses give rise to additional heating of PM. With this, the temperature‐dependent working characteristic of PM (second quadrant of the B‐H curve) moves toward the coordinate origin point. The overall machine performance is reduced. The presented work gives the view about happenings in permanent magnets regarding induced eddy current losses. It is a useful tool for fast estimation and reduction of eddy current losses in PM due to stator geometry.

Originality/value

The value of the paper is the closed view about happenings in permanent magnets regarding induced eddy currents and the calculation of eddy current losses in rotor permanent magnets of BLDC due to stator design. The originality is in the analytical approach to calculate the eddy current losses based only on known magneto‐static flux density distribution in air‐gap of BLDC.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 September 2010

Katsumi Yamazaki, Yuki Yamato, Hisashi Mogi, Chikara Kaido, Akihito Nakahara, Kazuhiko Takahashi, Kazumasa Ide and Ken'ichi Hattori

The purpose of this paper is to investigate the distribution of in‐plane eddy currents in stator core packets of turbine generators, and to reveal the loss reduction effect by the…

Abstract

Purpose

The purpose of this paper is to investigate the distribution of in‐plane eddy currents in stator core packets of turbine generators, and to reveal the loss reduction effect by the slits in the stator teeth.

Design/methodology/approach

The in‐plane eddy currents are calculated by a 3D finite element method that considers lamination of electrical steel sheets. First, this method is applied to a simple model that simulates the stator core of the turbine generators. The calculated losses are compared with the measured losses in order to confirm the validity. Next, the same method is applied to a 250 MVA class turbine generator.

Findings

The validity of the calculation method is confirmed by the measurement of the simple model. By applying this method to the turbine generator, it is clarified that the considerable in‐plane eddy currents are generated not only at the end stator packets, but also at the top of the teeth of the interior packets due to the duct space. It is also clarified that the in‐plane eddycurrent loss decreases as nearly half by the slits of the stator teeth.

Originality/value

A reliable calculation method for the in‐plane eddycurrent loss in the turbine generators is developed. The results obtained by this method are valuable for the design of the generator from the viewpoint of heat conduction.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 673