Search results

1 – 10 of 30
Article
Publication date: 2 February 2024

Dawu Shu, Shaolei Cao, Yan Zhang, Wanxin Li, Bo Han, Fangfang An and Ruining Liu

This paper aims to find a suitable solution to degrade the C.I. Reactive Red 24 (RR24) dyeing wastewater by using sodium persulphate to recycle water and inorganic salts.

Abstract

Purpose

This paper aims to find a suitable solution to degrade the C.I. Reactive Red 24 (RR24) dyeing wastewater by using sodium persulphate to recycle water and inorganic salts.

Design/methodology/approach

The effects of temperature, the concentration of inorganic salts and Na2CO3 and the initial pH value on the degradation of RR24 were studied. Furthermore, the relationship between free radicals and RR24 degradation effect was investigated. Microscopic routes and mechanisms of dye degradation were further confirmed by testing the degradation karyoplasmic ratio of the product. The feasibility of the one-bath cyclic dyeing in the recycled dyeing wastewater was confirmed through the properties of dye utilization and color parameters.

Findings

The appropriate conditions were 0.3 g/L of sodium persulphate and treatment at 95°C for 30 min, which resulted in a decolorization rate of 98.4% for the dyeing wastewater. Acidic conditions are conducive to rapid degradation of dyes, while ·OH or SO4· have a destructive effect on dyes under alkaline conditions. In the early stage of degradation, ·OH played a major role in the degradation of dyes. For sustainable cyclic dyeing of RR24, inorganic salts were reused in this dyeing process and dye uptake increased with the times of cycles. After the fixation, some Na2CO3 may be converted to other salts, thereby increasing the dye uptake in subsequent cyclic staining. However, it has little impact on the dye exhaustion rate and color parameters of dyed fabrics.

Originality/value

The recommended technology not only reduces the quantity of dyeing wastewater but also enables the recycling of inorganic salts and water, which meets the requirements of sustainable development and clean production.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 April 2024

Shilpi Aggarwal

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial…

Abstract

Purpose

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial attention in food, pharmaceutical, textile, cosmetics, etc. owing to their health and environmental benefits. The present study aims to focus on the elimination of the use of synthetic dyes and provides brief information about natural dyes, their sources, extraction procedures with characterization and various advantages and disadvantages.

Design/methodology/approach

In producing natural colors, extraction and purification are essential steps. Various conventional methods used till date have a low yield, as these consume a lot of solvent volume, time, labor and energy or may destroy the coloring behavior of the actual molecules. The establishment of proper characterization and certification protocols for natural dyes would improve the yielding of natural dyes and benefit both producers and users.

Findings

However, scientists have found modern extraction methods to obtain maximum color yield. They are also modifying the fabric surface to appraise its uptake behavior of color. Various extraction techniques such as solvent, aqueous, enzymatic and fermentation and extraction with microwave or ultrasonic energy, supercritical fluid extraction and alkaline or acid extraction are currently available for these natural dyes and are summarized in the present review article.

Originality/value

If natural dye availability can be increased by the different extraction measures and the cost of purified dyes can be brought down with a proper certification mechanism, there is a wide scope for the adoption of these dyes by small-scale dyeing units.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 March 2024

Rıza Atav and Özge Çolakoğlu

The purpose of this study is to determine the effect of laser treatment on disperse dye-uptake and fastness values of polyester fabrics. Furthermore, it was aimed to evaluate…

Abstract

Purpose

The purpose of this study is to determine the effect of laser treatment on disperse dye-uptake and fastness values of polyester fabrics. Furthermore, it was aimed to evaluate colors directly over the photos of fabric samples instead of color measuring with spectrophotometer which is thought to be useful in terms of online digital color assessment.

Design/methodology/approach

In this study, 100% polyester (150 denier) single jersey knitted fabrics (weight: 145 g/m2, course density: 15 loops/cm, wale density: 24 loops/cm) were used in the trials. The effect of laser treatments before and after dyeing on color was investigated. Laser treatments were applied to fabrics at different resolutions (20, 25 and 30 dpi) and pixel times (60, 80 and 100 µs) before dyeing. The power of the laser beam was 210 W and the wavelength was 10.6 µm. In order to determine the effect of laser treatment on polyester; FTIR analysis, SEM-EDX analysis and bursting strength tests were applied to untreated and treated fabric samples.

Findings

It was found that treatments with laser have a significant effect on disperse dye-uptake of polyester fibers, and for this reason laser-treated fabrics were dyed in darker shade. Furthermore, it was determined that the samples treated at 30 dpi started to melt and the fabric was damaged considerably, but the fabrics treated at 20 and 25 dpi were not affected at all. Another result obtained regarding the use of laser technology in polyester fabrics is that if some areas of fabrics are not treated with laser and some other areas are treated with laser at 20 dpi 60 µs and 25 dpi 60 µs, it will be possible to obtain patterns containing three different shades of the same color on the fabric.

Originality/value

When the literature is examined, it is seen that there are various studies on the dyeability and patterning of polyester fabrics with disperse dyes by laser technology. As it is known, today color measurement is done digitally using a spectrophotometer. However, when we look at a photograph on computer screens, the colors we see are defined by RGB (red-green-blue) values, while in the spectrophotometer they are defined by L*a*b* (L*: lightness-darkness, a*: redness-greenness, b*: yellowness-blueness) values. Especially when it is desired to produce various design products by creating patterns with laser technology, it would be more useful to show the color directly to the customer on the computer screen and to be able to speak over the same values on the color. For this reason, in this study, the color measurement of the fabric samples was not made with a spectrophotometer, instead, the RGB values obtained from the photographs of the samples were converted into L*a*b* values with MATLAB and interpreted, that is, a digital color evaluation was made on the photographs. Therefore, it is believed that this study will contribute to the literature.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 11 December 2023

Shereen Omar Bahlool and Zeinab M. Kenawy

Peanut skins are an agro-waste product with no commercial value. The purpose of this paper is to evaluate peanut skin as a natural dyestuff and to determine if this natural dye…

29

Abstract

Purpose

Peanut skins are an agro-waste product with no commercial value. The purpose of this paper is to evaluate peanut skin as a natural dyestuff and to determine if this natural dye could be used in the dyeing of some Egyptian cotton cultivars.

Design/methodology/approach

The methodology consists of several steps; dye extraction procedure from peanut skin through aqueous extraction, then dyeing optimized using simultaneous mordanting using alum. Finally, dyed cotton has been subjected to different textile laboratory tests, for example, color measurements and mechanical properties. Color-fastness was determined on Egyptian cotton fabric. The peanut skin as a source of natural dye and the dyed cotton sample were characterized by fourier transform infrared spectroscopy (FTIR) analysis.

Findings

It was found that the natural dye extracted from peanut skin has an affinity for cotton samples and showed high dyeability with a unique color shade, good color strength and very good fastness.

Originality/value

The novelty of this paper is the extraction of color from the peanut's outer skin which is discarded as waste such as agro-waste of the agricultural process which can be used as a natural dye in the textile industry and applied to dyeing some Egyptian cotton fibers from different genotypes.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 March 2024

Khaled Mostafa and Azza El-Sanabary

The novelty addressed here is undertaken by using tailor-made and fully characterized starch nanoparticles (SNPs) having a particle size ranging from 80 to 100 nm with a larger…

Abstract

Purpose

The novelty addressed here is undertaken by using tailor-made and fully characterized starch nanoparticles (SNPs) having a particle size ranging from 80 to 100 nm with a larger surface area, biodegradability and high reactivity as a starting substrate for cadmium ions and basic dye removal from wastewater effluent. This was done via carboxylation of SNPs with citric acid via esterification reaction using the dry preparation technique, in which a simple, energy-safe and sustainable process concerning a small amount of water, energy and toxic chemicals was used. The obtained adsorbent is designated as cross-linked esterified starch nanoparticles (CESNPs).

Design/methodology/approach

The batch technique was used to determine the CESNPs adsorption capacity, whereas atomic adsorption spectrometry was used to determine the residual cadmium ions concentration in the filtrate before and after adsorption. Different factors affecting adsorption were examined concerning pH, contact time, adsorbent dose and degree of carboxylation. Besides, to validate the esterification reaction and existence of carboxylic groups in the adsorbent, CESNPs were characterized metrologically via analytical tools for carboxyl content estimation and instrumental tools using Fourier-transform infrared spectroscopy (FTIR) spectra and scanning electron microscopy (SEM) morphological analysis.

Findings

The overall adsorption potential of CESNPs was found to be 136 mg/g when a 0.1 g adsorbent dose having 190.8 meq/100 g sample carboxyl content at pH 5 for 60 min contact time was used. Besides, increasing the degree of carboxylation of the CESNPs expressed as carboxyl content would lead to the higher adsorption capacity of cadmium ions. FTIR spectroscopy analysis elucidates the esterification reaction with the appearance of a new intense peak C=O ester at 1,700 cm−1, whereas SEM observations reveal some atomic/molecules disorder after esterification.

Originality/value

The innovation addressed here is undertaken by studying the consequence of altering the extent of carboxylation reaction expressed as carboxyl contents on the prepared CESNPs via a simple dry technique with a small amount of water, energy and toxic chemicals that were used as a sustainable bio nano polymer for cadmium ions and basic dye removal from wastewater effluent in comparison with other counterparts published in the literature.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 10 November 2022

Md. Raijul Islam, Ayub Nabi Nabi Khan, Rois Uddin Mahmud, Shahin Mohammad Nasimul Haque and Md. Mohibul Islam Khan

This paper aims to evaluate the effects of banana (Musa) peel and guava (Psidium guajava) leaves extract as mordants on jute–cotton union fabrics dyed with onion skin extract as a…

Abstract

Purpose

This paper aims to evaluate the effects of banana (Musa) peel and guava (Psidium guajava) leaves extract as mordants on jute–cotton union fabrics dyed with onion skin extract as a natural dye.

Design/methodology/approach

The dye was extracted from the outer skin of onions by boiling in water and later concentrated. The bio-mordants were prepared by maceration using methanol and ethanol. The fabrics were pre-mordanted, simultaneously mordanted and post-mordanted with various concentrations according to the weight of the fabric. The dyed and mordanted fabrics were later subjected to measurement of color coordinates, color strength and colorfastness to the washing test. Furthermore, the dyed samples were characterized by Fourier transform infrared, and different chemical bonds were analyzed by X-ray photoelectron spectroscopy analysis.

Findings

Significant improvement was obtained in colorfastness and color strength values in various instances using banana peel and guava leaves as bio mordants. Post-mordanted with banana peel provided the best results for wash fastness. Better color strength was achieved by fabric post-mordanted with guava leave extracts.

Originality/value

Sustainable dyeing methods of natural dyes using banana peel and guava leaves as bio mordants were explored on jute–cotton union fabrics. Improvement in colorfastness and color strength for various instances was observed. Thus, this paper provides a promising alternative to metallic salt mordants.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 February 2024

Shimaa S.M. Elhadad, Hany Kafafy, Hamada Mashaly and Ahmed Ali El-Sayed

The purpose of this study is to use liposome technology in the treatment of fabrics textiles because of its efficient energy saving, reducing time and temperature.

Abstract

Purpose

The purpose of this study is to use liposome technology in the treatment of fabrics textiles because of its efficient energy saving, reducing time and temperature.

Design/methodology/approach

The newly prepared lecithin liposome was used to encapsulate dyes for the purpose of increasing dyeing affinity. Different ratios of commercially available lecithin liposomes (1%, 3%, 5% and 7%) were used simultaneously in the dyeing of cotton and wool fabrics. The treated fabrics (cotton and wool fabrics) were confirmed using different analytical procedures such as scanning electron microscope (SEM), Fourier-transition infrared spectroscopy, ultraviolet protection factor, colour strength (K|S) measurements and fastness measurements.

Findings

The results show that increasing liposome ratios in dyeing baths leads to increased dyeing affinity for cotton and wool fabrics compared with conventional dyeing without using liposomes. In addition to that, the colour strength values, infrared spectra, SEM and fastness properties of non-liposome-dyed fabrics and liposome-dyed fabrics were investigated.

Originality/value

The research paper provides broad spectrum of green encapsulation fabrics using liposome technology to perform the dye stability, dye strength and fastness.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 June 2022

Sheraz Hussain Siddique Hussain Yousfani, Salma Farooq, Quratulain Mohtashim and Hugh Gong

Porosity is one of the most important properties of the textile substrate. It can influence the comfort of a garment by affecting its breathability and thermal conductivity…

Abstract

Purpose

Porosity is one of the most important properties of the textile substrate. It can influence the comfort of a garment by affecting its breathability and thermal conductivity. During the process of dyeing, the dye liquor comes in contact with the substrate; the absorption of the dye liquor into the substrate will be dependent on its porosity. The concept of porosity between the yarns of fabric is a common phenomenon; however, the porosity between the fibres in the yarn can also influence the dyeing behaviour of the fabric.

Design/methodology/approach

In this research, ring and rotor yarns of 25/s and 30/s counts are considered as textile substrates. The porosity of yarns was determined theoretically and experimentally using the image analysis method.

Findings

It was found that theoretical porosity is independent of the yarn manufacturing method. In addition, 30/s yarn was more porous as compared with 25/s yarn having a higher pore area. Rotor yarns had higher porosity, dye fixation and K/S as compared with ring yarns. Dyeing behaviour was also dependent on the count of yarn. Specifically, 30/s yarns have higher dye fixation as compared with 25/s yarns. However, 25/s yarns were dyed with deeper shades showing higher K/S values. Also, 25/s yarns are coarser than 30/s yarns having higher diameters and cross-sectional area, thus resulting in deeper shades and higher K/S values.

Originality/value

This novel technique is based on the comparative study of the porosity of various types of yarns using the image analysis technique. This investigation shows that the porosity between the fibres in the yarn can also influence the dyeing behaviour of the yarn.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 17 October 2023

Divaries Cosmas Jaravaza, Joshua Risiro, Paul Mukucha and Nomuhle Jaravaza

The main purpose of the study was to synthesise the role of COVID-19 social media messages and indigenous religious beliefs on public health promotion initiatives among rural…

Abstract

Purpose

The main purpose of the study was to synthesise the role of COVID-19 social media messages and indigenous religious beliefs on public health promotion initiatives among rural consumers in Zimbabwe.

Design/methodology/approach

A qualitative approach was adopted. Population consisting of 15 interviews and six focus groups was purposively sampled from Manicaland, Mashonaland Central and Masvingo provinces in Zimbabwe. A thematic approach was used to present and analyse the data.

Findings

Rural consumers believed WhatsApp messages posted by people whom they know or influential personnel like health workers. Credibility of WhatsApp messages was enhanced through its ability to send videos and audios. Teachings and indoctrination by indigenous churches and misinformation were found to be an impediment in believing COVID-19 WhatsApp messages and vaccination by rural consumers. Faith healers in indigenous churches used various practices and artefacts like holy water, stone pebbles, clay pots, flags and wooden rods to pray and treat patients suffering from COVID-19 and other ailments.

Practical implications

Social media messages, religious teachings and indoctrination may be a hindrance to rural consumers in adopting government public health promotion initiatives; hence, public health professionals need prior emic understanding and co-option of local leadership in vaccination campaigns.

Originality/value

This study outstretches the theoretical landscape in consumer behaviour and also practical contribution to health practitioners and marketers on breaking indigenous religious barriers and social media misconceptions on vaccination uptake through promotional strategies earmarked for rural consumers.

Details

International Journal of Pharmaceutical and Healthcare Marketing, vol. 18 no. 1
Type: Research Article
ISSN: 1750-6123

Keywords

Book part
Publication date: 14 December 2023

Paul Chiedozie Odigbo

Entrepreneurship education is being taught to undergraduates in tertiary institutions and fresh graduates in youth programmes to encourage start-ups and create employment as a…

Abstract

Entrepreneurship education is being taught to undergraduates in tertiary institutions and fresh graduates in youth programmes to encourage start-ups and create employment as a strategy to stem youth unemployment. As such, entrepreneurship education programmes are expected to include rigorous processes of programme design, implementation and evaluation so as to achieve changes in behaviour, attitude and action of participants measureable in terms of start-up and jobs created. Two entrepreneurship education programmes implemented in Nigeria are evaluated to ascertain the level of effectiveness in design, implementation and evaluation and the outcomes in terms of start-ups and employment created. Research methods adopted in the two programmes combine observation techniques with content analyses, action research in case study and focus group interviews. In addition, test-retest techniques in a quasi-experimental design, with a structured questionnaire is adopted in programme number two only. The findings are that while it is suspected that the design stage is jumped in programme number one, in programme two, the design is poorly done. Implementation is ineffective in the two programmes because objectives did not arise from programme design as they ought to and evaluation methods are inappropriate and so ineffective. The recommendations include review of the design of the two programmes to generate appropriate and measurable objectives; adopting implementation strategies that will achieve the measurable objectives generated from revised programme designs and adopting appropriate evaluation techniques that has capacity to measure outcomes and impact in addition to outputs.

Details

Delivering Entrepreneurship Education in Africa
Type: Book
ISBN: 978-1-83753-326-8

Keywords

1 – 10 of 30