Search results

1 – 10 of 24
Article
Publication date: 8 November 2023

Panagiotis Kordas, Konstantinos Fotopoulos, George Lampeas, Evangelos Karelas and Evgenios Louizos

Fuselage structures are subjected to combinations of axial, bending, shear and differential pressure loads. The validation of advanced metallic and composite fuselage designs…

Abstract

Purpose

Fuselage structures are subjected to combinations of axial, bending, shear and differential pressure loads. The validation of advanced metallic and composite fuselage designs against such loads is based on the full-scale testing of the fuselage barrel, which, however, is highly demanding from a time and cost viewpoint. This paper aims to assist in scaling-down the experimentation to the stiffened panel level which presents the opportunity to validate state-of-the-art designs at higher rates than previously attainable.

Design/methodology/approach

Development of a methodology to successfully design tests at the stiffened panel level and realize them using advanced, complex and adaptable test-rigs that are capable of introducing independently a set of distinct load types (e.g. internal overpressure, tension, shear) while applying appropriate boundary conditions at the edges of the stiffened panel.

Findings

A baseline test-rig configuration was developed after extensive parametric modelling studies at the stiffened panel level. The realization of the loading and boundary conditions on the test-rig was facilitated through innovative supporting and loading system set-ups.

Originality/value

The proposed test bench is novel and compared to the conventional counterparts more viable from an economic and manufacturing point of view. It leads to panel responses, which are as close as possible to those of the fuselage barrel in-flight and can be used for the execution of static or fatigue tests on metallic and thermoplastic curved integrally stiffened full-scale panels, representative of a business jet fuselage.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 May 2022

Nivin M. Ahmed, Mostafa G. Mohamed and Walaa M. Abd El-Gawad

Long time ago, multistructured materials showed great interest being considered as the bridge between bulk and atomic materials. Core-shell particles are kind of composite…

Abstract

Purpose

Long time ago, multistructured materials showed great interest being considered as the bridge between bulk and atomic materials. Core-shell particles are kind of composite materials that refer to multilayered structures with a core totally surrounded by shell(s) (onion-like structure). These new structures can offer an advantage of applying new adjustable parameters like shape, stoichiometry and chemical ordering, in addition to the opportunity of tailoring more complexed structures for different applications. Recently it was found that these structures can be tuned and taken for more advanced path with novel structures formed of core surrounded by multishells. The purpose of this study is to study the effect of the new anticorrosive pigments with its mutual shells and how each shell affects the performance of the pigment in protecting the metal and which shell will be more relevant in its effect.

Design/methodology/approach

The prepared pigments were characterized using X-ray fluorescence, X-ray diffraction, TEM and SEM/EDX to prove their core-shell structure, and then they were integrated in coating formulations to evaluate their anticorrosive activity using immersion test and electrochemical impedance spectroscopy (EIS).

Findings

The results showed that the prepared core-shell pigments possess a lot of unique characteristics and can offer improved anticorrosive performance in the generated coatings.

Originality/value

Core-mutual shells structured pigments were prepared for improving the corrosion resistivity of the organic coatings as a new trend in anticorrosive pigments.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 31 August 2022

Mohamed Badr, Maged A. Youssef, Salah El-Fitiany and Ajitanshu Vedrtnam

Understanding the structural performance of external glass curtain walls (façades) during fire exposure is critical for the safety of the occupants as their failure can lead to…

Abstract

Purpose

Understanding the structural performance of external glass curtain walls (façades) during fire exposure is critical for the safety of the occupants as their failure can lead to fire spread throughout the entire building. This concern is magnified by the recent increase in fire incidents and wildfires. This paper presents the first simplified technique to model single-skin façades during fire exposure and then utilizes it to examine the structural behaviour of vertical, inclined and oversized façade panels.

Design/methodology/approach

The proposed technique is based on conducting simplified heat transfer calculations and then utilizing a widely used structural analysis software program to analyze the façade. Validation for the proposed technique with reference to available experimental and numerical studies by others is presented. A parametric study is then conducted to assess the structural performance of different glass façade systems during exposure to fire.

Findings

The proposed technique was found to provide accurate predictions of the structural performance of glass façades during fire exposure. The structural performance of inclined façade systems during fire exposure was found to be superior to vertical and oversized façade systems.

Originality/value

This research paper is the first to provide a simplified technique that can be utilized to model single-skin facades under fire. The presented technique along with the conducted parametric study will improve the understanding of the fire behaviour of single-skin glass facades, which will lead to safer applications.

Abstract

Details

Overlapping Generations: Methods, Models and Morphology
Type: Book
ISBN: 978-1-83753-052-6

Abstract

Details

Embracing Chaos
Type: Book
ISBN: 978-1-83753-635-1

Article
Publication date: 5 June 2023

Prashant Kumar Choudhary

The objective of the present work is to present the design optimization of composite cylindrical shell subjected to an axial compressive load and lateral pressure.

Abstract

Purpose

The objective of the present work is to present the design optimization of composite cylindrical shell subjected to an axial compressive load and lateral pressure.

Design/methodology/approach

A novel optimization method is developed to predict the optimal fiber orientation in composite cylindrical shell. The optimization is carried out by coupling analytical and finite element (FE) results with a genetic algorithm (GA)-based optimization scheme developed in MATLAB. Linear eigenvalue were performed to evaluate the buckling behaviour of composite cylinders. In analytical part, besides the buckling analysis, Tsai-Wu failure criteria are employed to analyse the failure of the composite structure.

Findings

The optimal result obtained through this study is compared with traditionally used laminates with 0, 90, ±45 orientation. The results suggest that the application of this novel optimization algorithm leads to an increase of 94% in buckling strength.

Originality/value

The proposed optimal fiber orientation can provide a practical and efficient way for the designers to evaluate the buckling pressure of the composite shells in the design stage.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 16 August 2023

Andrea Zani, Alberto Speroni, Andrea Giovanni Mainini, Michele Zinzi, Luisa Caldas and Tiziana Poli

The paper aims to investigate the comfort-related performances of an innovative solar shading solution based on a new composite patented material that consists of a cement-based…

Abstract

Purpose

The paper aims to investigate the comfort-related performances of an innovative solar shading solution based on a new composite patented material that consists of a cement-based matrix coupled with a stretchable three-dimensional textile. The paper’s aim is, through a performance-based generative design approach, to develop a high-performance static shading system able to guarantee adequate daylit spaces, a connection with the outdoors and a glare-free environment in the view of a holistic and occupant-centric daylight assessment.

Design/methodology/approach

The paper describes the design and simulation process of a complex static shading system for digital manufacturing purposes. Initially, the optical material properties were characterized to calibrate radiance-based simulations. The developed models were then implemented in a multi-objective genetic optimization algorithm to improve the shading geometries, and their performance was assessed and compared with traditional external louvres and overhangs.

Findings

The system developed demonstrates, for a reference office space located in Milan (Italy), the potential of increasing useful daylight illuminance by 35% with a reduced glare of up to 70%–80% while providing better uniformity and connection with the outdoors as a result of a topological optimization of the shape and position of the openings.

Originality/value

The paper presents the innovative nature of a new composite material that, coupled with the proposed performance-based optimization process, enables the fabrication of optimized shading/cladding surfaces with complex geometries whose formability does not require ad hoc formworks, making the process fast and economic.

Details

Construction Innovation , vol. 24 no. 1
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 12 January 2024

Manar Hamid Jasim and Ali Mohammed Ali Al-Araji

The purpose of this study is to model the theory of the low-velocity impact (LVI) process on sandwich beams consisting of flexible cores and face sheets reinforced with…

Abstract

Purpose

The purpose of this study is to model the theory of the low-velocity impact (LVI) process on sandwich beams consisting of flexible cores and face sheets reinforced with functionally graded carbon nanotubes (CNTs).

Design/methodology/approach

A series of parameters derived from molecular dynamics are used to consider the size scale in the mixture rule for the combination of CNTs and resin. A procedure involving the use of the first-order shear deformation theory of the beam is used to provide the displacement field of the sandwich beam. The energy method and subsequently the generalized Lagrange method are used to derive the motion equations. Due to the use of Hertz’s nonlinear theory to calculate the contact force, the equations of motion are nonlinear. Validation of the problem is carried out by comparing natural frequencies with other papers.

Findings

The influence of a series of parameters such as CNTs distributions pattern in the face sheets, the influence of the CNTs volume fraction and the influence of the core thickness to the face sheets thickness ratio in the issue of LVI on sandwich beams with clamped-clamped boundary conditions is investigated. The result shows that the type of CNTs pattern in the face sheet and the CNTs volume fraction have a very important effect on the answer to the problem, which is caused by the change in the value of the Young’s modulus of the beam at the contact surface. Changes in the core thickness to the face sheets thickness ratio has little effect on the impact response.

Originality/value

Considering the important application of sandwich structures in vehicles, aviation and ships, in this research, sandwich beams consisting of flexible core and CNTs-reinforced face sheets are investigated under LVI.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 March 2023

Xiaokun Zhou, Suming Xie, Maosheng He, Tingting Fu and Qifeng Yu

This study aims to reduce the weight of the door, improve the operating efficiency and ensure the safety of vehicle operation.

Abstract

Purpose

This study aims to reduce the weight of the door, improve the operating efficiency and ensure the safety of vehicle operation.

Design/methodology/approach

Based on traditional aluminium alloy doors, a new type of honeycomb composite material was developed. Tests were conducted to determine the honeycomb compression resistance, honeycomb and skin shear performance, plate bending, thermal conductivity and environmental protection. Eight doors were developed based on the full-side open structure, and static strength and stiffness analyses were performed simultaneously. To solve door vibration problems, modal analysis and test were carried out.

Findings

The test results showed that the weight of the door was reduced by more than 40% whilst ensuring the strength and stiffness of the vehicle. The first–sixth-order test mode of the door was increased by more than 14% compared with existing aluminium alloy doors.

Originality/value

A new type of honeycomb composite material was used in this study. The test results showed that the weight of the door was reduced by more than 40% whilst ensuring the strength and stiffness of the vehicle. The 1st-to-6th order test mode of the door was increased by more than 14% compared with the existing aluminium alloy door.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 June 2023

Kinshuk Saurabh

The purpose of the study is to examine how operating efficiencies from incentive alignment compensate for rent extraction in family firms. The author asks whether ownership (1…

Abstract

Purpose

The purpose of the study is to examine how operating efficiencies from incentive alignment compensate for rent extraction in family firms. The author asks whether ownership (1) improves operating efficiencies to increase firm value, (2) positively affects related-party transactions (RPTs), or (3) destroys firm value. Finally, the author assesses whether the incentive effect dominates the entrenchment effect.

Design/methodology/approach

This study employs a panel of 333 listed family firms (and 185 nonfamily firms) and handles endogeneity using a dynamic panel system GMM and panel VAR.

Findings

Ownership decreases discretionary expenses and increases asset utilization to add firm value. The efficiency gains generate more value in family firms, especially majority-held ones, than in nonmajority ones. However, ownership is also related to increased RPTs (especially dubious loans/guarantees), reducing firm value. RPTs destroy value more severely in the family (or group) firms than in nonfamily (nongroup) firms. It could be why ownership's positive impact on value is lower in family firms than in nonfamily firms. Overall, the incentive effect dominates the entrenchment effect and is robust to controlling private benefits of control in the dynamic ownership-value model.

Research limitations/implications

(1) A family firm's ownership may not be optimal. (2) The firm's long-term commitment as a dynasty limits the scale of expropriation yet sustains impetus for long-term value creation. The paradox partly explains why large family holdings and firm-specific investments endure over generations. (3) This way, large ownership substitutes weak investor protection in India despite tunneling as skin in the game provides necessary investor confidence. (4) Future studies can examine whether extraction varies with family generations and how family characteristics affect the incentive effects.

Practical implications

(1) Concentrated ownership may not be a wrong policy choice in emerging markets to draw firm-specific investments. (2) Investors, auditors, or creditors must pay closer attention to loans/guarantees. (3) More vigorous enforcement, auditor scrutiny, and board oversight are needed.

Social implications

Family firms are not necessarily a bad organization type that destroys investor wealth. They can be valuably efficient due to their ownership and wealth concentration, and frugality. They matter in the economic growth of a developing market like India.

Originality/value

(1) Extends ownership-performance research to family firms and shows that although ownership facilitates tunneling, the incentive effect dominates; (2) family ownership is not impacted by firm value; (3) family ownership levels reduce discretionary expenses and increase asset utilization to create added value, especially in majority-held family firms; (4) RPTs and loans/guarantees increase with ownership; (5) value erosion from RPTs is higher in family (group) firms than in other firms.

Details

International Journal of Managerial Finance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1743-9132

Keywords

1 – 10 of 24