Search results

1 – 10 of over 254000
Article
Publication date: 29 August 2008

Achintya Haldar and Ali Mehrabian

Structural engineering as a part of civil engineering has over 5,000 years of distinguished history, as documented in this paper. An attempt is made in this paper to define…

2191

Abstract

Purpose

Structural engineering as a part of civil engineering has over 5,000 years of distinguished history, as documented in this paper. An attempt is made in this paper to define structural engineering as it exists at present, then some historical structures are identified.

Design/methodology/approach

The advances of structural engineering are discussed in chronological order, encompassing the development of the concept, analysis, the use of innovative construction materials, and construction. The developments which necessitated the change of design philosophies are presented, and the current status of structural engineering is discussed in terms of several specific topics. Opportunities and challenges in the new millennium in structural engineering are then presented in terms of education, service to society, and research.

Findings

In the past, structural engineering always met the challenges it faced. It helped to improve our quality of life, and its role in society is not expected to change in the near future.

Originality/value

The paper has provided an over‐view of this important profession – from ancient history to the present day. Based on research over several decades it offers a prediction of the direction in which this profession and the academic research that underpins it is likely to take in the future.

Details

Structural Survey, vol. 26 no. 4
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 23 November 2021

Jalal Javadi Moghaddam, Davood Momeni and Ghasem Zarei

This research presents a design method for designing greenhouse structures based on topology optimization. Moreover, the structural design of a gothic greenhouse is proposed in…

Abstract

Purpose

This research presents a design method for designing greenhouse structures based on topology optimization. Moreover, the structural design of a gothic greenhouse is proposed in which its structural strength has been improved by using this proposed method. In this method, the design of the structure is done mathematically; therefore, in the design process, more attention can be focused on the constraint space and boundary conditions. It was also shown how the static reliability and fatigue coefficients will change as a result of the design of the greenhouse structure with this method. Another purpose of this study is to find the weakest part of the greenhouse structure against lateral winds and other general loads on the greenhouse structure.

Design/methodology/approach

In the proposed method, the outer surface and the allowable volume as a constraint domain were considered. The desired loads can be located on the constraint domain. The topology optimization was used to minimize the mass and structural compliance as the objective function. The obtained volume was modified for simplifying the construction. The changes in the shape of the greenhouse structure were investigated by choosing three different penalty numbers for the topology optimization algorithm. The final design of the proposed structure was performed based on the total simultaneous critical loads on the structure. The results of the proposed method were compared in the order of different volume fractions. This showed that the volume fraction approach can significantly reduce the weight of the structure while maintaining its strength and stability.

Findings

Topology optimization results showed different strut and chords composition because of the changes in maximum mass limit and volume fraction. The results showed that the fatigue was more hazardous, and it decreased the strength of structure nearly three times more than a static analysis. Further, it was noticed that how the penalty numbers can affect topology optimization results. An optimal design based on topology optimization results was presented to improve the proposed greenhouse design against destruction and demolition. Furthermore, this study shows the most sensitive part of the greenhouse against the standard loads of wind, snow, and crop.

Originality/value

The obtained designs were compared with a conventional arch greenhouse, and then the structural performances were shown based on standard loads. The results showed that in designing the proposed structure, the optimized changes increased the structure strength against the standard loads compared to a simple arch greenhouse. Moreover, the stress safety factor and fatigue safety factor because of different designs of this structure were also compared with each other.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 April 2016

Yunlong Tang and Yaoyao Fiona Zhao

This paper aims to provide a comprehensive review of the state-of–the-art design methods for additive manufacturing (AM) technologies to improve functional performance.

3221

Abstract

Purpose

This paper aims to provide a comprehensive review of the state-of–the-art design methods for additive manufacturing (AM) technologies to improve functional performance.

Design/methodology/approach

In this survey, design methods for AM to improve functional performance are divided into two main groups. They are design methods for a specific objective and general design methods. Design methods in the first group primarily focus on the improvement of functional performance, while the second group also takes other important factors such as manufacturability and cost into consideration with a more general framework. Design methods in each groups are carefully reviewed with discussion and comparison.

Findings

The advantages and disadvantages of different design methods for AM are discussed in this paper. Some general issues of existing methods are summarized below: most existing design methods only focus on a single design scale with a single function; few product-level design methods are available for both products’ functionality and assembly; and some existing design methods are hard to implement for the lack of suitable computer-aided design software.

Practical implications

This study is a useful source for designers to select an appropriate design method to take full advantage of AM.

Originality/value

In this survey, a novel classification method is used to categorize existing design methods for AM. Based on this classification method, a comprehensive review is provided in this paper as an informative source for designers and researchers working in this field.

Details

Rapid Prototyping Journal, vol. 22 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 June 2017

Lin Cheng, Pu Zhang, Emre Biyikli, Jiaxi Bai, Joshua Robbins and Albert To

The purpose of the paper is to propose a homogenization-based topology optimization method to optimize the design of variable-density cellular structure, in order to achieve…

2444

Abstract

Purpose

The purpose of the paper is to propose a homogenization-based topology optimization method to optimize the design of variable-density cellular structure, in order to achieve lightweight design and overcome some of the manufacturability issues in additive manufacturing.

Design/methodology/approach

First, homogenization is performed to capture the effective mechanical properties of cellular structures through the scaling law as a function their relative density. Second, the scaling law is used directly in the topology optimization algorithm to compute the optimal density distribution for the part being optimized. Third, a new technique is presented to reconstruct the computer-aided design (CAD) model of the optimal variable-density cellular structure. The proposed method is validated by comparing the results obtained through homogenized model, full-scale simulation and experimentally testing the optimized parts after being additive manufactured.

Findings

The test examples demonstrate that the homogenization-based method is efficient, accurate and is able to produce manufacturable designs.

Originality/value

The optimized designs in our examples also show significant increase in stiffness and strength when compared to the original designs with identical overall weight.

Details

Rapid Prototyping Journal, vol. 23 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 August 2016

Jie Zhang, Mi Zuo, Pan Wang, Jian-feng Yu and Yuan Li

Design is a time-consuming process for mechanical production. Some design structures frequently occur in different products and can be shared by multiple assembly models. Thus…

Abstract

Purpose

Design is a time-consuming process for mechanical production. Some design structures frequently occur in different products and can be shared by multiple assembly models. Thus, identifying these structures and adding them to a design knowledge library significantly speed up the design process. Most studies addressing this issue have traditionally focused on part models and have not extended to assembly models. This paper aims to find a method for common design structure discovery in assembly models.

Design/methodology/approach

Computer-aided design models have a great deal of valuable information defined by different designers in the design stages, especially the assembly models, which are actually carriers of information from multiple sources. In this paper, an approach for discovering a common design structure in assembly models is proposed by comparing information from multiple sources. Assembly models are first represented as attribute connection graphs (ACGs), in which we mainly consider topological information and various attributes of parts and connections. Then, we apply a K-means clustering method based on a similarity analysis of different attributes to classify the parts and connections and transform ACGs of assemblies into type code graphs (TCGs). After this, a discovery algorithm that improves upon fast frequent subgraph mining is used to identify common design structures in assemblies.

Findings

A new method was developed for discovering common design structures in assembly models, considering the similarity of information from multiple sources and allowing some differences in the details to keep both commonalities and individualities of common design structures.

Practical implications

Experiments show that the proposed method is efficient and can produce a reasonable result.

Originality/value

This discovery method helps designers find common design structures from different assembly models and shorten the design cycle. It is an effective approach to build a knowledge library for product design that can shorten the design cycle.

Details

Assembly Automation, vol. 36 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 25 July 2019

Zhoupeng Han, Rong Mo, Haicheng Yang and Li Hao

Three-dimensional computer-aided design (CAD) assembly model has become important resource for design reuse in enterprises, which implicates plenty of design intent, assembly…

Abstract

Purpose

Three-dimensional computer-aided design (CAD) assembly model has become important resource for design reuse in enterprises, which implicates plenty of design intent, assembly intent, design experience knowledge and functional structures. To acquire quickly CAD assembly models associated with specific functions by using product function requirement information in the product conceptual design phase for model reuse, this paper aims to find an approach for structure-function correlations analysis and functional semantic annotation of mechanical CAD assembly model before functional semantic-based assembly retrieval.

Design/methodology/approach

An approach for structure-function correlations analysis and functional semantic annotation of CAD assembly model is proposed. First, the product knowledge model is constructed based on ontology including design knowledge and function knowledge. Then, CAD assembly model is represented by part attributed adjacency graph and partitioned into multiple functional regions. Assembly region and flow-activity region are defined for structure-function correlations analysis of CAD assembly model. Meanwhile, the extraction process of assembly region and flow-activity region is given in detail. Furthermore, structure-function correlations analysis and functional semantic annotation are achieved by considering comprehensively assembly structure and assembled part shape structure in CAD assembly model. After that, a structure-function relation model is established based on polychromatic sets for expressing explicitly and formally relationships between functional structures, assembled parts and functional semantics.

Findings

The correlation between structure and function is analyzed effectively, and functional semantics corresponding to structures in CAD assembly model are labeled. Additionally, the relationships between functional structures, assembled parts and functional semantics can be described explicitly and formally.

Practical implications

The approach can be used to help designers accomplish functional semantic annotation of CAD assembly models in model repository, which provides support for functional semantic-based CAD assembly retrieval in the product conceptual design phase. These assembly models can be reused for product structure design and assembly process design.

Originality/value

The paper proposes a novel approach for structure-function correlations analysis and functional semantic annotation of mechanical CAD assembly model. Functional structures in assembly model are extracted and analyzed from the point of view of assembly structure and function part structure. Furthermore, the correlation relation between structures, assembled parts and functional semantics is expressed explicitly and formally based on polychromatic sets.

Details

Assembly Automation, vol. 39 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 20 March 2017

Recep M. Gorguluarslan, Umesh N. Gandhi, Yuyang Song and Seung-Kyum Choi

Methods to optimize lattice structure design, such as ground structure optimization, have been shown to be useful when generating efficient design concepts with complex truss-like…

1662

Abstract

Purpose

Methods to optimize lattice structure design, such as ground structure optimization, have been shown to be useful when generating efficient design concepts with complex truss-like cellular structures. Unfortunately, designs suggested by lattice structure optimization methods are often infeasible because the obtained cross-sectional parameter values cannot be fabricated by additive manufacturing (AM) processes, and it is often very difficult to transform a design proposal into one that can be additively designed. This paper aims to propose an improved, two-phase lattice structure optimization framework that considers manufacturing constraints for the AM process.

Design/methodology/approach

The proposed framework uses a conventional ground structure optimization method in the first phase. In the second phase, the results from the ground structure optimization are modified according to the pre-determined manufacturing constraints using a second optimization procedure. To decrease the computational cost of the optimization process, an efficient gradient-based optimization algorithm, namely, the method of feasible directions (MFDs), is integrated into this framework. The developed framework is applied to three different design examples. The efficacy of the framework is compared to that of existing lattice structure optimization methods.

Findings

The proposed optimization framework provided designs more efficiently and with better performance than the existing optimization methods.

Practical implications

The proposed framework can be used effectively for optimizing complex lattice-based structures.

Originality/value

An improved optimization framework that efficiently considers the AM constraints was reported for the design of lattice-based structures.

Details

Rapid Prototyping Journal, vol. 23 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 August 2019

Linlin Bai and Jiu Zhou

The purpose of this paper, on innovative design of traditional weft-backed woven fabric, is to investigate a design principle and method for full-backed structure with…

Abstract

Purpose

The purpose of this paper, on innovative design of traditional weft-backed woven fabric, is to investigate a design principle and method for full-backed structure with double-faced shading effect to realize two types of double-faced shading effects for traditional weft-backed fabric that are impossible to be realized under plane design mode. In addition, the study on the color rendering law is conducive to the design application, and the effectiveness of the design method has been verified by the design practices.

Design/methodology/approach

This paper presents a design method for full-backed structure with two shaded weave databases (SWDs) by selecting two primary weaves (PWs), establishing the corresponding SWDs, selecting the proper compound structures for database of full-backed structure with double-faced shading effect. Color card fabric with 544 specimens is produced and their color values are measured, their color difference and variance are analyzed to evaluate the color rendering characteristics. Finally, double-faced weft-backed fabrics are produced under layered-combination design mode to verify the practicality of full-backed structure with double-faced shading effect.

Findings

Weft-backed woven fabrics with “SPDC” (same pattern and different color) and “DPDC” (different pattern and different color) shading effects can be produced using full-backed structure with double-faced shading effect. The color expression is extremely enhanced (136 compound structures on one side for one color weft). In the shading process, two sets of wefts do not affect each other, and stable and ideal color shading effect with high color purity can be expressed according to the analyses on the L* (lightness) values, color purity, color differences (0.47–3.20) and variance (0.25–1.21) of the color card fabric.

Originality/value

Breaking through the structural limitations and achieving the double-faced shading effects that cannot be expressed in plane design mode. The research on two weft-backed fabric with the most basic weft-backed structure provides not only a theoretical base for further study on weft-backed structures, but also some references for structure innovation design of traditional weft-backed woven fabrics.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 June 2015

Li Yang, Ola A Harrysson, Harvey A West II, Denis R. Cormier, Chun Park and Kara Peters

The aim of this study is to perform a comparative study on sandwich structures with several types of three-dimensional (3D) reticulate cellular structural core designs for their…

Abstract

Purpose

The aim of this study is to perform a comparative study on sandwich structures with several types of three-dimensional (3D) reticulate cellular structural core designs for their low-energy impact absorption abilities using powder bed additive manufacturing methods. 3D reticulate cellular structures possess promising potentials in various applications with sandwich structure designs. One of the properties critical to the sandwich structures in applications, such as aerospace and automobile components, is the low-energy impact performance.

Design/methodology/approach

Sandwich samples of various designs, including re-entrant auxetic, rhombic, hexagonal and octahedral, were designed and fabricated via selective laser sintering (SLS) process using nylon 12 as material. Low-energy drop weight test was performed to evaluate the energy absorption of various designs. Tensile coupons were also produced using the same process to provide baseline material properties. The manufacturing issues such as geometrical accuracy and anisotropy effect as well as their effects on the performance of the structures were discussed.

Findings

In general, 3D reticulate cellular structures made by SLS process exhibit significantly different characteristics under low-energy drop weight impact compared to the regular extruded honeycomb sandwich panels. A hexagonal sandwich panel exhibits the largest compliance with the smallest energy absorption ability, and an octahedral sandwich panel exhibits high stiffness as well as good impact protection ability. Through a proper geometrical design, the re-entrant auxetic sandwich panels could achieve a combination of high energy absorption and low response force, making it especially attractive for low-impact protection applications.

Originality/value

There has been little work on the comparative study of the energy absorption of various 3D reticulate cellular structures to date. This work demonstrates the potential of 3D reticulate cellular structures as sandwich cores for different purposes. This work also demonstrates the possibility of controlling the performance of this type of sandwich structures via geometrical and process design of the cellular cores with powder bed additive manufacturing systems.

Details

Rapid Prototyping Journal, vol. 21 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 May 2011

Jan Achterbergh and Dirk Vriens

The purpose of this paper is to show how the viable system model (VSM) and de Sitter's design theory can complement each other in the context of the diagnosis and design of viable…

940

Abstract

Purpose

The purpose of this paper is to show how the viable system model (VSM) and de Sitter's design theory can complement each other in the context of the diagnosis and design of viable organizations.

Design/methodology/approach

Key concepts from Beer's model and de Sitter's design theory are introduced and analyzed in order to show how they relate.

Findings

The VSM provides insight into the related systems necessary and sufficient for viability. As such, it specifies criteria supporting the diagnosis and design of organizational infrastructures, i.e. of organizational structures, HR systems, and technology. However, it does not explicitly conceptualize and provide a detailed heuristic for the design of organizational structures. De Sitter's theory fills in this gap.

Originality/value

The paper illustrates how, based on a rudimentary model of organizational viability, de Sitter's design theory positively addresses the question of how to diagnose and design organizational structures that add to the viability of organizations.

Details

Kybernetes, vol. 40 no. 3/4
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of over 254000