Search results

1 – 10 of 19
Article
Publication date: 18 September 2017

M.P. Jenarthanan, Venkata Sai Sunil Gujjalapudi and Venkatraman V.

The purpose of this paper is to originate a statistical model for delamination factor, surface roughness, machining force and also to determine and compare the effects of…

Abstract

Purpose

The purpose of this paper is to originate a statistical model for delamination factor, surface roughness, machining force and also to determine and compare the effects of machining parameters (spindle speed, fiber orientation angle, helix angle and feed rate) on the output responses during end-milling of glass fiber reinforced polymers (GFRP) by using desirability functional analysis (DFA) and grey relational analysis (GRA).

Design/methodology/approach

Based on Taguchi’s L27 orthogonal array, milling experiments were carried on GFRP composite plates employing solid carbide end mills with different helix angles. The machining parameters were optimized by an approach based on DFA and GRA, which were useful tools for optimizing multi-response considerations, namely, machining force, surface roughness and delamination factor. A composite desirability index was obtained for multi-responses using individual desirability values from DFA. Based on this index and grey relational grade the optimum levels of parameters were identified and significant contribution of parameters was ascertained by analysis of variance.

Findings

Fiber orientation angle (66.75 percent) was the significant parameter preceded by feed rate (15.05 percent), helix angle (7.76 percent) and spindle speed (0.30 percent) for GFRP composite plates.

Originality/value

Multi-objective optimization in end-milling of GFRP composites using DFA and GRA has not been performed yet.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 April 2018

Naresh Neeli, M.P. Jenarthanan and G. Dileep Kumar

The purpose of this paper is to optimise the process parameters, namely, fibre orientation angle, helix angle, spindle speed, and feed rate in milling of glass fibre-reinforced…

Abstract

Purpose

The purpose of this paper is to optimise the process parameters, namely, fibre orientation angle, helix angle, spindle speed, and feed rate in milling of glass fibre-reinforced plastic (GFRP) composites using grey relational analysis (GRA) and desirability function analysis (DFA).

Design/methodology/approach

In this work, experiments were carried out as per the Taguchi experimental design and an L27 orthogonal array was used to study the influence of various combinations of process parameters on surface roughness and delamination factor. As a dynamic approach, the multiple response optimisation was carried out using GRA and DFA for simultaneous evaluation. These two methods are best suited for multiple criteria evaluation and are also not much complicated.

Findings

The process parameters were found optimum at a fibre orientation angle of 15°, helix angle of 25°, spindle speed of 6,000 rpm, and a feed rate of 0.04 mm/rev. Analysis of variance was employed to classify the significant parameters affecting the responses. The results indicate that the fibre orientation angle is the most significant parameter preceded by helix angle, feed rate, and spindle speed for GFRP composites.

Originality/value

An attempt to optimise surface roughness and delamination factor together by combined approach of GRA and DFA has not been previously done.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 August 2013

M. Santhi, R. Ravikumar and R. Jeyapaul

The purpose of this paper is to present a new method to optimize the electro chemical machining process parameters for titanium alloy (Ti6Al4V).

516

Abstract

Purpose

The purpose of this paper is to present a new method to optimize the electro chemical machining process parameters for titanium alloy (Ti6Al4V).

Design/methodology/approach

The desirability function analysis (DFA), fuzzy set theory with trapezoidal membership function and Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method are used to optimize the electro chemical machining process parameters for titanium alloy (Ti6Al4V). In recent years, the utilization of titanium and its alloys, especially of Ti6Al4V materials, in many different engineering fields has undergone a tremendous increase. The ECM process has a potential in the machining of Ti6Al4V. The machining parameters such as electrolyte concentration, current, applied voltage and feed rate with multiple responses such as material removal rate (MRR) and surface roughness (SR) are considered. Experimental work is carried out on Ti6Al4V using second order central composite rotatable design. The two responses are converted into global knit quality index using DFA. Fuzzy set theory with trapezoidal membership function is used to convert all machining parameters and responses into fuzzy values. Then a TOPSIS approach which determines the optimal machining parameters in terms of higher closeness coefficient is proposed to optimize the machining parameters of ECM for titanium alloy. Finally, ANOVA is performed to investigate the significance of each machining parameter and to identify the most influencing factor which affects the process responses.

Findings

The optimal machining parameters for ECM process are determined using desirability function analysis, fuzzy set theory and TOPSIS.

Originality/value

A new method is proposed to optimize the electro chemical machining process parameters for titanium alloy.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 28 February 2024

Ram Niwas and Vikas Kumar

This paper aims to determine the optimum parametric settings for yielding superior mechanical properties, namely, ultimate tensile strength (UTS), yield strength (YS) and…

Abstract

Purpose

This paper aims to determine the optimum parametric settings for yielding superior mechanical properties, namely, ultimate tensile strength (UTS), yield strength (YS) and percentage elongation (EL) of AZ91D/AgNPs/TiO2 hybrid composite fabricated by friction stir processing.

Design/methodology/approach

An empirical model has been developed to govern crucial influencing parameters, namely, rotation speed (RS), tool transverse speed (TS), number of passes (NPS) and reinforcement fraction (RF) or weight percentage. Box Behnken design (BBD) with four input parameters and three levels of each parameter was used to design the experimental work, and analysis of variance (ANOVA) was used to check the acceptability of the developed model. Desirability function analysis (DFA) for a multiresponse optimization approach is integrated with response surface methodology (RSM). The individual desirability index (IDI) was calculated for each response, and a composite desirability index (CDI) was obtained. The optimal parametric settings were determined based on maximum CDI values. A confirmation test is also performed to compare the actual and predicted values of responses.

Findings

The relationship between input parameters and output responses (UTS, YS, and EL) was investigated using the Box-Behnken design (BBD). Silver nanoparticles (AgNPs) and nano-sized titanium dioxide (TiO2) enhanced the ultimate tensile strength and yield strength. It was observed that the inclusion of AgNPs led to an increase in ductility, while the increase in the weight fraction of TiO2 resulted in a decrease in ductility.

Practical implications

AZ91D/AgNPs/TiO2 hybrid composite finds enormous applications in biomedical implants, aerospace, sports and aerospace industries, especially where lightweight materials with high strength are critical.

Originality/value

In terms of optimum value through desirability, the experimental trials yield the following results: maximum value of UTS (318.369 MPa), maximum value of YS (200.120 MPa) and EL (7.610) at 1,021 rpm of RS, 70 mm/min of TS, 4 NPS and level 3 of RF.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 July 2022

Shafahat Ali, Said Abdallah, Deepak H. Devjani, Joel S. John, Wael A. Samad and Salman Pervaiz

This paper aims to investigate the effects of build parameters and strain rate on the mechanical properties of three-dimensional (3D) printed polylactic acid (PLA) by integrating…

Abstract

Purpose

This paper aims to investigate the effects of build parameters and strain rate on the mechanical properties of three-dimensional (3D) printed polylactic acid (PLA) by integrating digital image correlation and desirability function analysis. The build parameters included in this paper are the infill density, build orientation and layer height. These findings provide a framework for systematic mechanical characterization of 3D-printed PLA and potential ways of choosing process parameters to maximize performance for a given design.

Design/methodology/approach

The Taguchi method was used to shortlist a set of 18 different combinations of build parameters and testing conditions. Accordingly, 18 specimens were 3D printed using those combinations and put through a series of uniaxial tensions tests with digital image correlation. The mechanical properties deduced for all 18 tests were then used in a desirability function analysis where the mechanical properties were optimized to determine the ideal combination of build parameters and strain rate loading conditions.

Findings

By comparing the tensile mechanical experimental properties results between Taguchi's recommended parameters and the optimal parameter found from the response table of means, the composite desirability had increased by 2.08%. The tensile mechanical properties of the PLA specimens gradually decrease with an increase in the layer height, while they increase with increasing the infill densities. On the other hand, the mechanical properties have been affected by the build orientation and the strain rate in similar increasing/decreasing trends. Additionally, the obtained optimized results suggest that changing the infill density has a notable impact on the overall result, with a contribution of 48.61%. DIC patterns on the upright samples revealed bimodal strain patterns rendering them more susceptible to failures because of printing imperfections.

Originality/value

These findings provide a framework for systematic mechanical characterization of 3D-printed PLA and potential ways of choosing process parameters to maximize performance for a given design.

Details

Rapid Prototyping Journal, vol. 29 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 June 2023

Pawan Bishnoi and Pankaj Chandna

This present research aims to identify the optimum process parameters for enhancing geometric accuracy in single-point incremental forming of aviation-grade superalloy 625.

Abstract

Purpose

This present research aims to identify the optimum process parameters for enhancing geometric accuracy in single-point incremental forming of aviation-grade superalloy 625.

Design/methodology/approach

The geometric accuracy has been measured in terms of half-cone-angle, concentricity, roundness and wall-straightness errors. The Taguchi Orthogonal-Array L9 with desirability-function-analysis has been used to achieve improved accuracy.

Findings

To achieve maximum geometric accuracy, the optimum setting having a tooltip diameter of 10 mm, a step-size of 0.2 mm and a tool rotation speed (TRS) of 900 RPM has been derived. With this setting, the half-cone-angle accuracy increases by 42.96%, the concentricity errors decrease by 47.36%, the roundness errors decline by 45.2% and the wall straightness errors reduce by 1.06%.

Practical implications

Superalloy 625 is a widespread nickel-based alloy, finding enormous applications in aerospace, marine and chemical industries.

Originality/value

It has been recommended to increase TRS, reduce step-size and use moderate size tooltip diameter to enhance geometric accuracy. Step-size has been found to be the governing parameter among all the parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 October 2023

Pawan Bishnoi and Pankaj Chandna

This paper aims to optimize the single-point incremental forming process variables for realizing higher formability in Inconel 625 components and to plot the forming limit diagram…

Abstract

Purpose

This paper aims to optimize the single-point incremental forming process variables for realizing higher formability in Inconel 625 components and to plot the forming limit diagram for Inconel 625 aviation-grade superalloy.

Design/methodology/approach

The formability of Inconel 625 components has been measured in terms of major strain, minor strain and minimum sheet thickness. Response surface methodology with desirability function analysis has been used to achieve maximum formability. The finite element analysis has been conducted at optimal parametric setting.

Findings

The derived forming limit diagram proves that the maximum forming limit for Inconel 625 is 57.5° at the optimal parametric setting, achieved with desirability of 0.995. The outcomes of finite element analysis conducted at optimal parametric setting show excellent agreement with confirmation experiment results.

Practical implications

Inconel 625 superalloy is frequently used in aircraft and other high-performance applications for its superior strength.

Originality/value

It has been suggested that to enhance formability, higher tool rotation speed, minimum step-size, larger tooltip diameter and higher wall angle must be used. Wall angle is the governing parameter among all the parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 September 2023

Karrar Hussein, Habibollah Akbari, Rassoul Noorossana and Rostom Yadegari

This study aims to investigate the effects of process input parameters (welding current, welding time, electrode pressure and holding time) on the output responses (nugget…

35

Abstract

Purpose

This study aims to investigate the effects of process input parameters (welding current, welding time, electrode pressure and holding time) on the output responses (nugget diameter, peak load and indentation) that control the mechanical properties and quality of the joints in dissimilar resistance spot welding (RSW) for the third generation of advanced high-strength steel (AHSS) quenching and partitioning (Q&P980) and (SPFC780Y) high-strength steel spot welds.

Design/methodology/approach

Design of experiment approach with two level factors and center points was adopted. Destructive peel and shear tensile strengths were used to measure the responses. The significant factors were determined using analysis of variance implemented by Minitab 18 software. Finally, multiresponse optimization was carried out using the desirability function analysis method.

Findings

Holding time was the most significant factor influencing nugget diameter, whereas welding current had the greatest impact on peak load and indentation. Multiresponse optimization revealed that the optimal settings were a welding current of 12.5 KA, welding time of 18 cycles, electrode pressure of 420 Kgf and holding time of 10 cycles. These settings produced a nugget diameter of 8.0 mm, a peak load of 35.15 KN and an indentation of 22.5%, with a composite desirability function of 0.764.

Originality/value

This study provides an effective approach for multiple response optimization to the mechanical behavior of RSW joints, even though there have been few studies on the third generation of AHSS joints and none on the dissimilar joints of the materials used in this study.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 12 January 2022

Bhanodaya Kiran Babu Nadikudi

The main purpose of the present work is to study the multi response optimization of dissimilar friction stir welding (FSW) process parameters using Taguchi-based grey relational…

Abstract

Purpose

The main purpose of the present work is to study the multi response optimization of dissimilar friction stir welding (FSW) process parameters using Taguchi-based grey relational analysis and desirability function approach (DFA).

Design/methodology/approach

The welded sheets were fabricated as per Taguchi orthogonal array design. The effects of tool rotational speed, transverse speed and tool tilt angle process parameters on ultimate tensile strength and hardness were analyzed using grey relational analysis, and DFA and optimum parameters combination was determined.

Findings

The tensile strength and hardness values were evaluated from the welded joints. The optimum values of process parameters were estimated through grey relational analysis and DFA methods. Similar kind of optimum levels of process parameters were obtained through two optimization approaches as tool rotational speed of 1150 rpm, transverse speed of 24 mm/min and tool tilt angle of 2° are the best process parameters combination for maximizing both the tensile strength and hardness. Through these studies, it was confirmed that grey relational analysis and DFA methods can be used to find the multi response optimum values of FSW process parameters.

Research limitations/implications

In the present study, the FSW is performed with L9 orthogonal array design with three process parameters such as tool rotational speed, transverse speed and tilt angle and three levels.

Practical implications

Aluminium alloys are widely using in automotive and aerospace industries due to holding a high strength to weight property.

Originality/value

Very limited work had been carried out on multi objective optimization techniques such as grey relational analysis and DFA on friction stir welded joints made with dissimilar aluminium alloys sheets.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 September 2019

Subhash Yaragal, Chethan Kumar B. and Manoj Uddavolu Abhinav

To reduce environmental impact caused by excessive use of ordinary Portland cement (OPC) and to mitigate scarcity of base materials such as natural coarse aggregate (NCA)…

Abstract

Purpose

To reduce environmental impact caused by excessive use of ordinary Portland cement (OPC) and to mitigate scarcity of base materials such as natural coarse aggregate (NCA), industrial by-products can be carefully used as alternatives to OPC and NCA, in production of concrete. This paper aims to describe the performance of using ground granulated blast furnace slag (GGBS), fly ash (FA) as a complete replacement to OPC and ferrochrome slag (FCS) as replacement to NCA in production of novel FCS based alkali activated slag/fly ash concretes (AASFC) and evaluate their performance at elevated temperatures.

Design/methodology/approach

Two control factors with three levels each i.e. FA (0, 25 and 50 per cent by weight) and FCS (0, 50 and 100 per cent by volume) as a GGBS and NCA replacement, respectively, were adopted in AASFC mixtures. Further, AASFC mixture specimens were subjected to different levels of elevated temperature, i.e. 200°C, 400°C, 600°C and 800°C. Compressive strength and residual compressive strength were considered as responses. Three different optimization techniques i.e. gray relational analysis, technique for order preference by similarity to ideal solution and Desirability function approach were used to optimize AASFC mixtures subjected to elevated temperatures.

Findings

As FA replacement increases in FCS based AASFC mixtures, workability increases and compressive strength decreases. The introduction of FCS as replacement to NCA in AASFC mixture did not show any significant change in compressive strength under ambient condition. AASFC produced with 75 per cent GGBS, 25 per cent FA and 100 per cent FCS was found to have excellent elevated temperature enduring properties among all other AASFC mixtures studied.

Originality/value

Although several studies are available on using GGBS, FA and FCS in production of OPC-based concretes, present study reports the performance of novel FCS based AASFC mixtures subjected to elevated temperatures. Further, GGBS, FA and FCS used in the present investigation significantly reduces CO2 emission and environmental degradation associated with OPC production and NCA extraction, respectively.

1 – 10 of 19