Search results

1 – 10 of 10
Article
Publication date: 8 August 2018

Shuaishuai Zhu, Baosen Zhang, Zhixin Ba, Xiangyang Mao, Weijie Fei and Zhangzhong Wang

This paper aims to investigate the friction and wear properties of Cr-Ni-Mo-V steel against 440C stainless steel under both water and water–silica mixture lubricant.

Abstract

Purpose

This paper aims to investigate the friction and wear properties of Cr-Ni-Mo-V steel against 440C stainless steel under both water and water–silica mixture lubricant.

Design/methodology/approach

The Cr-Ni-Mo-V steel specimens were taken from a forged steel brake disc with the process of quenching at 900°C and tempering at 600°C. The tribological testing was performed using a contact configuration of ball-on-flat with a liquid cell according to the ASTM standard. Detailed examinations on the worn surface were analyzed using a scanning electron microscope.

Findings

The results indicate that the friction coefficient and friction damage of the steel sliding under water–silica mixture are higher than those under water. The friction coefficient decreases with increasing load and increases with the sliding speed for the two lubricants. The mass wear rate presents a rising trend with both sliding load and speed. The wear mechanisms of the Cr-Ni-Mo-V steel sliding under the two lubricants are oxidation wear, abrasive wear and fatigue wear.

Research limitations/implications

Because of the chosen tribological testing approach, the research results could not describe the tribological performance of the brake disc accurately during actual braking process of the high-speed train. Therefore, researchers are encouraged to test the proposed propositions further.

Originality/value

This study shows that the tribology behavior of the Cr-Ni-Mo-V steel with water or water–silica mixture lubrications helps the industrial firms and academicians to work on the wear of the brake disc in rainwater or wet environment.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 February 1960

A plastic bubble canopy that will not shatter under impact from a 0·45 calibre bullet, and is safe for temperatures up to 400 deg., has been developed by the Goodyear Aircraft…

Abstract

A plastic bubble canopy that will not shatter under impact from a 0·45 calibre bullet, and is safe for temperatures up to 400 deg., has been developed by the Goodyear Aircraft Corp., U.S.A.

Details

Aircraft Engineering and Aerospace Technology, vol. 32 no. 2
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 April 1961

A.J. Kennedy and A.R. Sollars

THE previous articles in this series, concerning the titanium, magnesium and aluminium alloys, followed a very similar form, in that in each case consideration of the aircraft…

Abstract

THE previous articles in this series, concerning the titanium, magnesium and aluminium alloys, followed a very similar form, in that in each case consideration of the aircraft engineering applications was preceded by a metallurgical appreciation of the alloy systems under review. In the case of steels, a comprehensive article on similar lines would be nothing less than a monograph, and if steels are to be discussed within the space of a single article, then a quite different approach must be adopted. This review will not, then, examine steels generally in any great metallurgical detail, but will rather consider their special merits in aircraft engineering, particularly in the context of supersonic aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 August 1996

Ales Svoboda, Hans‐Åke Häggblad and Mats Näsström

Presents a finite element formulation of hot isostatic pressing (HIP) based on a continuum approach using thermal‐elastoviscoplastic constitutive equations with compressibility…

Abstract

Presents a finite element formulation of hot isostatic pressing (HIP) based on a continuum approach using thermal‐elastoviscoplastic constitutive equations with compressibility. The formulation takes into consideration dependence of the viscoplastic part on the porosity. Also takes into account the thermomechanical response, including nonlinear effects in both the thermal and mechanical analyses. Implements the material model in an implicit finite element code. Presents experimental procedures for evaluating the inelastic behaviour of metal powders during densification and experimental data. Chooses the simulation of the dilatometer measurement of a cylindrical component during HIP and manufacturing simulation of a turbine component to near net shape (NNS) as a demonstrator example. Both components are made of a hot isostatically pressed hot‐working martensitic steel. Compares the result of the simulation in the form of the final geometry of the container with the geometry of a real component produced by HIP. Makes a comparison between the calculated and measured deformations during the HIP process for the cylindrical component. Measures the final geometry of the turbine component by means of a computer controlled measuring machine (CMM). Performs the complete process from design and simulation to geometry verification within a computer‐aided concurrent engineering (CACE) system.

Details

Engineering Computations, vol. 13 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 January 2020

Md. Rumman Ul Ahsan, Ali Newaz Mohammad Tanvir, Taylor Ross, Ahmed Elsawy, Min-Suk Oh and Duck Bong Kim

Wire + arc additive manufacturing (WAAM) uses existing welding technology to make a part from metal deposited in an almost net shape. WAAM is flexible in that it can use multiple…

1111

Abstract

Purpose

Wire + arc additive manufacturing (WAAM) uses existing welding technology to make a part from metal deposited in an almost net shape. WAAM is flexible in that it can use multiple materials successively or simultaneously during the manufacturing of a single component.

Design/methodology/approach

In this work, a gas metal arc welding (GMAW) based wire + arc additive manufacturing (WAAM) system has been developed to use two material successively and fabricate bimetallic additively manufactured structure (BAMS) of low carbon steel and AISI 316L stainless steel (SS).

Findings

The interface shows two distinctive zones of LCS and SS deposits without any weld defects. The hardness profile shows a sudden increase of hardness at the interface, which is attributed to the migration of chromium from the SS. The tensile test results show that the bimetallic specimens failed at the LCS side, as LCS has lower strength of the materials used.

Originality/value

The microstructural features and mechanical properties are studied in-depth with special emphasis on the bimetallic interface.

Details

Rapid Prototyping Journal, vol. 26 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 June 2018

L.M. Quej-Ake, A. Contreras, H.B Liu, J.L. Alamilla and E. Sosa

The purpose of this paper is to study the susceptibility to corrosion processes of X60, X65 and X70 steels immersed in sand-clay soil with pH 3.0, using electrochemical…

Abstract

Purpose

The purpose of this paper is to study the susceptibility to corrosion processes of X60, X65 and X70 steels immersed in sand-clay soil with pH 3.0, using electrochemical techniques, scanning electron microscopy (SEM), energy dispersive spectroscopy and X-ray diffraction (XRD).

Design/methodology/approach

Natural acidic soil sample was collected as close as possible to buried pipes (1.2 m in depth) in a Right of Way from south of Mexico. Both steels and soil were characterized through SEM and XRD. Then, open circuit potential was recorded for all steels exposed to soil at different exposure times. Thus, the electrochemical impedance spectroscopy (EIS) was traced, and anodic polarization curves were obtained.

Findings

The steel corrosion processes started when the active sites were exposed to natural acidic soil. However, corrosion rates decreased for three steels as immersion time increased, obtaining the highest corrosion rate for X60 steel (0.46 mm/year for 5 h). This behavior could be attributed to corrosion products obtained at different exposure times. While, 5 h after removing corrosion products, X65 steel was more susceptible to corrosion (1.29 mm/year), which was corroborated with EIS analysis. Thus, corrosion products for the three steels exposed to natural acidic soil depended on different microstructures, percentage of pearlite and ferrite phases, in which different corrosion processes could occur. Therefore, the active sites for carbon steel surfaces could be passivated with corrosion products.

Practical implications

The paper identifies the any implication for the research.

Originality/value

Some anodic peaks could be caused by metallic dissolution and was recorded using high positive polarization (high field of perturbation). In addition, the inductive effects and diffusion process were interpreted at low frequency ranges using EIS. According to X-ray diffraction (XRD), acidic soil had Muscovite containing aluminum and iron phases that were able to generate hydrogen proton at the presence of water; it might be promoted at the beginning of deterioration on low carbon steels. Steel surface cleaning after removing corrosion products was considered to study the possible diffusion phenomena on damaged steel surfaces using EIS.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 30 April 2020

Haijing Sun, Weihai Xue, Jiaxin Xu, Guoliang Chen and Jie Sun

The purpose of this work is to provide theoretical guidance and experimental analysis for optimized cathodic protection (CP) design of low alloy steel in deep water environments.

Abstract

Purpose

The purpose of this work is to provide theoretical guidance and experimental analysis for optimized cathodic protection (CP) design of low alloy steel in deep water environments.

Design/methodology/approach

In the present study, the CP criteria of 10Ni5CrMoV low alloy steel were investigated in a simulated deep water environment (350 m) regarding the theoretical protection potential and measured protection potential. The influences of hydrostatic pressure (HP) and temperature were also discussed in detail. The theoretical protection potential was analyzed with the Nernst equation, and the measured minimum protection potential was derived by extrapolating the Tafel portion of anodic polarization curves.

Findings

The results indicate that the minimum protection potential of low alloy steel shifts to a positive value in a deep-ocean environment. This can be attributed to the combined effects of HP and the temperature. Moreover, the temperature has a stronger influence compared with HP. The results suggest that the CP potential criteria used in shallow water are still applicable in the deep ocean, which is further confirmed through the SEM and x-ray diffraction analysis of the corrosion products resulted from the potentiostatic cathodic polarization experiments at −0.85 VCSE.

Originality/value

In recent decades, successful applications of CP for long-term corrosion protection of the steel components applied at a subsea level have enabled the offshore industry to develop reliable and optimized CP systems for shallow water. However, differences in the seawater environment at greater depths have raised concerns regarding the applicability of the existing CP design for deeper water environments. Hence, this research focuses on the CP criteria of low alloy steel in simulated deep water environment concerning the theoretical protection potential and measured protection potential. The influences of HP and temperature were also discussed.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 24 January 2020

Guiyang Wu, Qiang Zhang and Nange Zhang

Organic coatings are one of the most widely applied methods for corrosion protection of metallic materials such as the tubing used in sour gas field. However, such coatings…

Abstract

Purpose

Organic coatings are one of the most widely applied methods for corrosion protection of metallic materials such as the tubing used in sour gas field. However, such coatings usually encounter the risk of failure due to the harsh and complex environment. Therefore, the study of failure of the organic coating is highly significant.

Design/methodology/approach

In this paper, the effects of Cl-concentration, HCl content, hydrogen sulfide/carbon dioxide (H2S/CO2), temperature and flow rate on the failure of epoxy-phenolic coating on the internal surface of BG90S steel tubing were investigated using adhesion force measurement, metallographic microscope, electrochemistry impedance spectroscopy and Fourier transform infrared spectroscopy.

Findings

The results show that the Cl-concentration, HCl content and H2S/CO2 do not affect the failure process too much as the ion concentration increased. However, the flow rate at the high temperature is the most important factor affecting the corrosion resistance of the inner coating tubing. With the increase of the flow rate, the pore resistance of the coating shows a decreasing trend, and the rate of decrease in pore resistance is first rapid and then slow. It demonstrates that the penetration speed of the electrolyte solution into the coating varied from fast to slowly. A weakening influence of the flow rate on the penetration failure of the inner coating can be found as the increase of the flow rate. Once the HS-ions penetrate through the coating and reach at the coating/steel interface where H2 could be formed through the adsorption reaction, the coating failure occurs.

Originality/value

The failure of the coating depends on the penetration rate of water and ions, with the presence of exposed or punctured holes is accelerated and HS- was adsorpted by substrate Fe, and form H2 molecules between the coatings and substrate, that results failure of coatings.

Details

Pigment & Resin Technology, vol. 49 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 27 November 2018

Zhichao Qiu, Chunming Xiong, Zhengrong Ye, Ran Yi and Na Zhang

The purpose of this paper is to solve the tubing corrosion problem of B Block on the Right Bank of Amu Darya river sour gas field.

Abstract

Purpose

The purpose of this paper is to solve the tubing corrosion problem of B Block on the Right Bank of Amu Darya river sour gas field.

Design/methodology/approach

By using four-point-bending method, the tubing’s ability to resist sulfide-stress cracking was tested. Simulating the wellbore corrosive environment, the corrosion inhibitor which was suitable for gas filed had been screened. According to the characteristic of Amu Darya river gas field, the corrosion monitor system had been designed.

Findings

From the feedback of wellbore corrosion monitor result, the corrosion rate was lower than 0.076 mm/a.

Originality/value

This anti-corrosion technique provides security for the development of gas field.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 December 2022

Runyao Yu, Xingwang Bai, Xueqi Yu and Haiou Zhang

A new wire arc additive manufacturing (WAAM) process combined with gravity-driven powder feeding was developed to fabricate components of tungsten carbide (WC)-reinforced iron…

236

Abstract

Purpose

A new wire arc additive manufacturing (WAAM) process combined with gravity-driven powder feeding was developed to fabricate components of tungsten carbide (WC)-reinforced iron matrix composites. The purpose of this study was to investigate the particle transportation mechanism during deposition and determine the effects of WC particle size on the microstructure and properties of the so-fabricated component.

Design/methodology/approach

Thin-walled samples were deposited by the new WAAM using two WC particles of different sizes. A series of in-depth investigations were conducted to reveal the differences in the macro morphology, microstructure, tensile performance and wear properties.

Findings

The results showed that inward convection and gravity were the main factors affecting WC transportation in the molten pool. Large WC particles have higher ability than small particles to penetrate into the molten pool and survive severe dissolution. Small WC particles were more likely to be completely dissolved around the top surface, forming a thicker region of reticulate (Fe, W)6C. Large WC particles can slow down the inward convection more, thereby leading to an increase in width and a decrease in the layer height of the weld bead. The mechanical properties and wear resistance significantly increased owing to reinforcement. Comparatively, samples with large WC particles showed inferior tensile properties owing to their higher susceptibility to cracks.

Originality/value

Fabricating metal matrix composites through the WAAM process is a novel concept that still requires further investigation. Apart from the self-designed gravity-driven powder feeding, the unique aspects of this study also include the revelation of the particle transportation mechanism of WC particles during deposition.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 10