Search results

1 – 10 of over 2000
Article
Publication date: 11 August 2023

Abdelkader Guillal and Noureddine Abdelbaki

The aim of this study is to assess the opportunity for the development of hydrocarbon transportation using high-strength steel (HSS) in pipeline construction in terms of cost…

Abstract

Purpose

The aim of this study is to assess the opportunity for the development of hydrocarbon transportation using high-strength steel (HSS) in pipeline construction in terms of cost savings and reliability.

Design/methodology/approach

Several optimizations of pipeline design and operations were performed to estimate the total life-cycle cost variation associated with different grades of high-strength steel. The generalized reduced gradient (GRG) method was used in an Excel table to determine optimal total life cycle each pipeline. Variables used in this optimization with respect to each steel grade were as follows: pipeline external diameter, wall thickness, number of compression stations and installed power in each compression station. The reliability of a pipeline with optimal cost was assessed to highlight the impact of steel grade on pipeline reliability.

Findings

The study showed that the cost reduction is strongly dependent on the adopted gas pipeline configuration. The number of compression stations and external diameter are the main factors influencing the pipeline total life cycle cost, while the steel price seems to have a minor effect, the reduction of the gas pipeline total life cycle does not exceed 5% even with a 50% difference in pipe steel prices between X70 and X100 steels. On the other side, for the same external diameter, X100 steel presents better pipeline reliability against carbonic corrosion compared to X70 steel.

Practical implications

The main contribution of this study is to provide a decision-support tool to help pipeline constructors enhance the profitability of natural gas transmission pipelines. The optimization method used is simple to use for design engineers during a feasibility study.

Originality/value

The present study presents one step to fill the gap concerning the question of balancing the trade-off between cost savings and structural reliability in high-strength steel pipelines during the early stages of feasibility studies. The optimal design and operations parameters ensuring cost savings on total life cycle costs are identified via an optimization method. The impact of selected optimal parameters on the long-term pipeline service life was estimated via a structural reliability analysis.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 November 2017

Yanbao Guo, Hai Tan, Deguo Wang and Tao Meng

With the rapid development of rail transportation and energy-delivery systems, such as buried oil and gas pipelines and high-voltage transmission lines, the alternating current…

Abstract

Purpose

With the rapid development of rail transportation and energy-delivery systems, such as buried oil and gas pipelines and high-voltage transmission lines, the alternating current (AC) corrosion of buried steel pipelines is becoming more serious. This paper aims to study the corrosion behaviours of Q235 buried steel pipelines induced by the alternating stray current, with a set of indoor simulated experiment apparatuses.

Design/methodology/approach

The corrosion of the coating holidays of the buried steel pipelines at various AC current densities from 0 to 200 A/m2 in the soil-simulating environment was revealed by the electrochemical and weight-loss methods.

Findings

The results showed that the corrosion potential of the steel shifted negatively obviously and the corrosion rate of the steel increased with the increasing of AC current density. At a low AC current density, the negative deviation of the corrosion potential of the steel was small and the increase of corrosion rate was slight. However, the negative deviation of the corrosion potential was remarkable and the corrosion rate was greatly increased at a relative higher AC current density. The geometrical shape of the corrosion images indicated the corrosion forms changed from uniform corrosion to local corrosion due to the increase of AC interference.

Originality/value

Investigation results are of benefit to provide a new strategy to forecast and evaluate the AC-induced corrosion of the buried pipelines which could improve the safety of pipeline transportation.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 August 2020

Mayur Pratap Singh, Dinesh Kumar Shukla, Rajneesh Kumar and Kanwer Singh Arora

The key purpose of conducting this review is to identify the issues that affect the structural integrity of pipeline structures. Heat affected zone (HAZ) has been identified as…

Abstract

Purpose

The key purpose of conducting this review is to identify the issues that affect the structural integrity of pipeline structures. Heat affected zone (HAZ) has been identified as the weak zone in pipeline welds which is prone to have immature failures

Design/methodology/approach

In the present work, literature review is conducted on key issues related to the structural integrity of pipeline steel welds. Mechanical and microstructural transformations that take place during welding have been systematically reviewed in the present review paper.

Findings

Key findings of the present review underline the role of brittle microstructure phases, and hard secondary particles present in the matrix are responsible for intergranular and intragranular cracks.

Research limitations/implications

The research limitations of the present review are new material characterization techniques that are not available in developing countries.

Practical implications

The practical limitations are new test methodologies and associated cost.

Social implications

The fracture of pipelines significantly affects the surrounding ecology. The continuous spillage of oil pollutes the land and water of the surroundings.

Originality/value

The present review contains recent and past studies conducted on welded pipeline steel structures. The systematic analysis of studies conducted so far highlights various bottlenecks of the welding methods.

Details

International Journal of Structural Integrity, vol. 12 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 8 September 2022

Yaxin Ma, Hong Zhang, Yifei Gao, Zhengxing Men, Ling He and Jianguo Cao

This paper aims to investigate the reason for natural gas leakage from transmission pipelines between Linyi and Shouguang in China during sealing tests, explore the failure…

Abstract

Purpose

This paper aims to investigate the reason for natural gas leakage from transmission pipelines between Linyi and Shouguang in China during sealing tests, explore the failure mechanism and provide a reference for taking reasonable measures to prevent such accidents.

Design/methodology/approach

Failure analysis for the steel pipe has been addressed with different methods, such as microstructure analysis, inclusion analysis, corrosion product analysis, macro- and micro-morphology analyses and bacterially catalyzed experiments.

Findings

Several bulges were observed, especially at the bottom of the steel pipe sample, with the distribution and positioning not related to the weld. The inner surface of the steel pipe was severely corroded, and the oxide scale was flaking in many places. The greatest corrosion area was identified at the bottom of the steel pipe near the gas leakage point. Severe pitting and perforation corrosion in the pipeline were observed, and the main corrosion reaction products were Fe3O4, FeO and FeS. The grain orientation distribution near the crack (coarse grains <101> and fine grains <111> at the microcrack tip) indicates that fine grains may be beneficial in hindering crack propagation.

Originality/value

The principal mechanism for the corrosion failure is supposed to be due to the interaction of chloride ions with the sulfate-reducing microorganisms present and the stress corrosion cracking by chloride and sulfide formed by the sulfate-reducing microorganisms.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 December 2018

Yuanpeng Cheng, Yu Bai, Zili Li and JianGuo Liu

The purpose of this paper was to investigate the corrosion behavior of X65 steel in the CO2/oil/water environment using mass loss method, potentiodynamic polarization technique…

Abstract

Purpose

The purpose of this paper was to investigate the corrosion behavior of X65 steel in the CO2/oil/water environment using mass loss method, potentiodynamic polarization technique and characterization of the corroded surface techniques.

Design/methodology/approach

The weight loss analysis, electrochemical study and surface investigation were carried out on X65 steel that had been immersed in the CO2/oil/water corrosive medium to understand the corrosion behavior of gathering pipeline steel. The weight loss tests were carried out in a 3L autoclave, and effects of flow velocity, CO2 partial pressure and water cut on the CO2 corrosion rate of X65 steel were studied. Electrochemical studies were carried out in a three-electrode electrochemical cell with the test temperature of 60°C and CO2 partial pressure of 1 atm by recording open circuit potential/time and potentiodynamic polarization characteristics. The surface and cross-sectional morphologies of corrosion product scales were characterized using scanning electron microscopy. The phases of corrosion product scales were investigated using X-ray diffraction.

Findings

The results showed that corrosion rates of X65 steel both increased at first and then decreased with the increase of flow velocity and CO2 partial pressure, and there were critical velocity and critical pressure in the simulated corrosive environment, below the critical value, the corrosion products formed on the steel surface were loose, porous and unstable, higher than the critical value, the corrosion product ?lms were dense, strong adhesion, and had a certain protective effect. Meanwhile, when the flow velocity exceeded the critical value, oil film could be adsorbed on the steel surface more evenly, corrosion reaction active points were reduced and the steel matrix was protected from being corroded and crude oil played a role of inhibitor, thus it influenced the corrosion rate. Above the critical CO2 partial pressure, the solubility of CO2 in crude oil increased, the viscosity of crude oil decreased and its fluidity became better, so that the probability of oil film adsorption increased, these factors led to the corrosion inhibition of X65 steel reinforced. The corrosion characteristics of gathering pipeline steel in the corrosive environment containing CO2 would change due to the presence of crude oil.

Originality/value

The results can be helpful in selecting the suitable corrosion inhibitors and targeted anti-corrosion measures for CO2/oil/water corrosive environment.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 April 2006

Furen Xiao, Bo Liao, Guiying Qiao, Chunling Zhang, Yiyin Shan, Yong Zhong and Ke Yang

As an optimal microstructure of pipeline steels, acicular ferrite is widely found in steels used in oil and gas pipeline transportation because it possesses both high strength and…

Abstract

As an optimal microstructure of pipeline steels, acicular ferrite is widely found in steels used in oil and gas pipeline transportation because it possesses both high strength and good toughness. In this paper, the microstructure of acicular ferrite and its continuous cooling transformation (CCT) diagrams of six steels with different carbon and alloy additions have been studied by using dilatometry, optical metallography. And the effects of different hot deformation processes on the CCT diagrams and microstructures have also been studied. Furthermore, the effects of microalloyed elements and hot deformation on continuous cooling transformation have been discussed. The results show that lower carbon content and alloy additions such as Mn, Nb, Ti, Mo, Ni and/or Cu in steels will promote the formation of acicular ferrite. The hot deformation promotes the acicular ferrite transformation and refines the microstructures of final products.

Details

Multidiscipline Modeling in Materials and Structures, vol. 2 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 June 2017

Yuanpeng Cheng, Zili Li, Yalei Zhao, Yazhou Xu, Qianqian Liu and Yu Bai

The purpose of this paper was to investigate the corrosion behaviour of API X65 pipeline steel in the simulated CO2/oil/water emulsion using weight loss technique, potentiodynamic…

292

Abstract

Purpose

The purpose of this paper was to investigate the corrosion behaviour of API X65 pipeline steel in the simulated CO2/oil/water emulsion using weight loss technique, potentiodynamic polarization technique and characterization of the corroded surface techniques.

Design/methodology/approach

The weight loss analysis, electrochemical study and surface investigation were carried out on API X65 pipeline steel that had been immersed in the CO2/oil/water corrosive medium to understand the corrosion behaviour of gathering pipeline steel. The weight loss tests were carried out in a 3L autoclave, and effects of temperature, CO2 partial pressure, water cut and flow velocity on the CO2 corrosion rate of API X65 pipeline steel were studied. Electrochemical studies were carried out in a three-electrode electrochemical cell with the test temperature was 60°C, and the CO2 partial pressure was 1 atm by recording open circuit potential/time and potentiodynamic polarization characteristics. The surface and cross-sectional morphologies of corrosion product scales were characterized using scanning electron microscopy. The phases of corrosion product scales were investigated using X-ray diffraction.

Findings

The results showed that water cut was the main controlling factor of API X65 steel corrosion under the conditions of CO2/oil/water multiphase flow, and it had significant impact on corrosion morphology. In the case of higher water cut or pure water phase, general corrosion occurred on the steel surface. While water cut was below 70 per cent, corrosion morphology transformed into localized corrosion, crude oil decreased corrosion rate significantly and played a role of inhibitor. Crude oil hindered the corrosion scales from being dissolved by corrosive medium and changed dimension and accumulation pattern of the crystal grain, thickness and structure of the corrosion scales; thus, it influenced the corrosion rate. The primary corrosion product of API X65 steel was ferrous carbonate, which could act as a protective film at low water cut so that the corrosion rate can be reduced.

Originality/value

The results can be helpful in selecting the suitable corrosion inhibitors and targeted anti-corrosion measures for CO2/oil/water corrosive environment.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 January 2017

L.M. Quej-Ake, J. Marín-Cruz and A. Contreras

The purpose of this paper was to study the corrosion process of API X52, X60, X65, X70 and X80 steels exposed to two clay soils collected in two states of Mexico (Tabasco and…

Abstract

Purpose

The purpose of this paper was to study the corrosion process of API X52, X60, X65, X70 and X80 steels exposed to two clay soils collected in two states of Mexico (Tabasco and Campeche). To saturate the soils, 60 mL of deionized water was added to simulate the conditions for dry and wet season, due to in field, the climate change could modifies the physicochemical properties of the soils for each season of the year and this generate a variable environment, which affect the electrochemical responses on steel–soil interface.

Design/methodology/approach

The corrosion evaluation was carried out simulating the conditions of deteriorated coating (bare steel); this includes steel surface exposed to clay soil affected by seasonal fluctuations in a tropical zone. These soils were characterized, without any further treatment as were found in the field (dry season). Moreover, some samples were taken and prepared to analyze in laboratory. For each soil sample, 60 mL of deionized water was added to simulate the rainy season (saturated soils). Electrochemical evaluations were carried out after 3 h of exposure time at room temperature. Because soil is a system with high resistivity and impedance, it is necessary to carry out IR-drop compensation using two platinum rods that were used as an auxiliary electrode. In addition, the IR-drop correction obtained from the experimental potentiodynamic curves was investigated.

Findings

In clay from Campeche (Clay-C), the more susceptible steel to corrosion was X65, whereas in clay from Tabasco (Clay-T), the more susceptible steel to corrosion was X80 steel. Electrochemical results show that despite higher-degree steels providing higher strength and hardness, the order of corrosion susceptibility is random, which can be attributed to different microstructures in the steels. The complexity of the corrosion process on five steels was evident when steel samples were exposed to different soils. The higher corrosion rate was obtained in X65 steel (0.5 mm/year).

Practical implications

The paper clearly identifies any implication for the research.

Originality/value

The electrochemical responses of different steels exposed in two types of clay soil explained the corrosion complexity that can be attributed to changes in physicochemical properties of the soils, which are because of changes in seasons (dry and rainy) and the microstructure of each steel related to the process of fabrication. Suggesting that the increase in mechanical properties such as hardness and resistance of the pipeline steels could not be associated with its corrosion resistance, the corrosion susceptibility is more dependent on the microstructure of the steels.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 July 2021

Haobo Yu, Zimo Li, Yeyin Xia, Yameng Qi, Yingchao Li, Qiaoping Liu and Changfeng Chen

This paper aims to investigate the anti-biocorrosion performance and mechanism of the Cu-bearing carbon steel in the environment containing sulfate-reducing bacterial (SRB).

Abstract

Purpose

This paper aims to investigate the anti-biocorrosion performance and mechanism of the Cu-bearing carbon steel in the environment containing sulfate-reducing bacterial (SRB).

Design/methodology/approach

The biocorrosion behavior of specimens with Cu concentration of 0 Wt.%, 0.1 Wt.%, 0.3 Wt.% and 0.6 Wt.% were investigated by immersion test in SRB solution. By examining the prepared cross-section of the biofilm using focused ion beam microscopy, SRB distribution, bacterial morphology, biofilm structure and composition were determined. The ion selectivity of the biofilm was also obtained by membrane potential measurement. Moreover, the anti-biocorrosion performance of the Cu-bearing carbon steel pipeline was tested in a shale gas field in Chongqing, China.

Findings

Both the results of the laboratory test and shale gas field test indicate that Cu-bearing carbon steel possesses obvious resistance to microbiologically influenced corrosion (MIC). The SRB, corrosion rate and pitting depth decreased dramatically with Cu concentration in the substrate. The local acidification caused by hydrolyze of ferric ion coming from SRB metabolism and furtherly aggravated by anion selectivity biofilm promoted the pitting corrosion. Anti-biocorrosion of Cu-bearing carbon steel was attributed to the accumulation of Cu compounds in the biofilm and the weaker anion selectivity of the biofilm. This research results provide an approach to the development of economical antibacterial metallic material.

Originality/value

MIC occurs extensively and has become one of the most frequent reasons for corrosion-induced failure in the oil and gas industry. In this study, Cu-bearing carbon steel was obtained by Cu addition in carbon steel and possessed excellent anti-biocorrosion property both in the laboratory and shale gas field. This study provides an approach to the development of an economical antibacterial carbon steel pipeline to resist MIC.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 November 2012

Jing Liu, JiHao Cheng, Qian Hu, Feng Huang, JinQiao Xu and Bin Guo

The purpose of this paper is to clarify the influence of the cathodic polarized potential on the stress corrosion cracking (SCC) susceptibility of X120 steel in a simulated acidic…

Abstract

Purpose

The purpose of this paper is to clarify the influence of the cathodic polarized potential on the stress corrosion cracking (SCC) susceptibility of X120 steel in a simulated acidic soil solution and the different SCC mechanisms at different cathodic polarized potentials.

Design/methodology/approach

The SCC behaviors of X120 pipe steels at various potentials were investigated in a simulated acidic soil solution by slow strain rate tensile tests, electrochemical impedance spectroscopy and surface analysis techniques.

Findings

The fracture surface of X120 steel stretched in air showed a ductile fracture. Both elongation and tensile strength of X120 steel in the simulated acidic soil solution decreased compared to that obtained in air. A slight cathodic polarization increased the elongation and tensile strength of X120 steel; therefore, the SCC susceptibility was lower at −0.65 VSCE than that at OCP, anodic dissolution dominates the corrosion process. However, a strong cathodic polarization induced hydrogen embrittlement, decreasing elongation and tensile strength, therefore, the SCC susceptibility was highest at −1.1 VSCE, and hydrogen embrittlement became the dominant process.

Originality/value

The paper provides an essential insight into the mechanism of pipeline SCC for X120 steel in acidic soil environments.

Details

Anti-Corrosion Methods and Materials, vol. 59 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 2000