Search results

1 – 10 of 50
Article
Publication date: 1 February 2024

Vishal Singh and Arvind K. Rajput

The present paper aims to analyse the synergistic effect of pocket orientation and piezo-viscous-polar (PVP) lubrication on the performance of multi-recessed hybrid journal…

Abstract

Purpose

The present paper aims to analyse the synergistic effect of pocket orientation and piezo-viscous-polar (PVP) lubrication on the performance of multi-recessed hybrid journal bearing (MHJB) system.

Design/methodology/approach

To simulate the behaviour of PVP lubricant in clearance space of the MHJB system, the modified form of Reynolds equation is numerically solved by using finite element method. Galerkin’s method is used to obtain the weak form of the governing equation. The system equation is solved by Gauss–Seidal iterative method to compute the unknown values of nodal oil film pressure. Subsequently, performance characteristics of bearing system are computed.

Findings

The simulated results reveal that the location of pressurised lubricant inlets significantly affects the oil film pressure distribution and may cause a significant effect on the characteristics of bearing system. Further, the use of PVP lubricant may significantly enhances the performance of the bearing system, namely.

Originality/value

The present work examines the influence of pocket orientation with respect to loading direction on the characteristics of PVP fluid lubricated MHJB system and provides vital information regarding the design of journal bearing system.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0241/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 January 2024

F.D. Ayegbusi and A.S. Idowu

The purpose of this study is to investigate the effects of entropy generation of some embedded thermophysical properties on heat and mass transfer of pulsatile flow of…

Abstract

Purpose

The purpose of this study is to investigate the effects of entropy generation of some embedded thermophysical properties on heat and mass transfer of pulsatile flow of non-Newtonian nanofluid flows between two porous parallel plates in the presence of Lorentz force are taken into account in this research.

Design/methodology/approach

The governing partial differential equations (PDEs) were nondimensionalized using suitable nondimensional quantities to transform the PDEs into a system of coupled nonlinear PDEs. The resulting equations are solved using the spectral relaxation method due to the effectiveness and accuracy of the method. The obtained velocity and temperature profiles are used to compute the entropy generation rate and Bejan number. The influence of various flow parameters on the velocity, temperature, entropy generation rate and Bejan number are discussed graphically.

Findings

The results indicate that the energy losses can be minimized in the system by choosing appropriate values for pertinent parameters; when thermal conductivity is increasing, this leads to the depreciation of entropy generation, and while this increment in thermal conductivity appreciates the Bejan number, the Eckert number on entropy generation and Bejan number, the graph shows that each time of increase in Eckert will lead to rising of entropy generation while this increase shows a reduction in Bejan number. To shed more light, these results were further demonstrated graphically. The current research was very well supported by prior literature works.

Originality/value

All results are presented graphically, and the results in this article are anticipated to be helpful in the area of engineering.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 June 2024

Songhao Wang, Zhenghua Qian and Yan Shang

The paper aims to the size-dependent analysis of functionally graded materials in thermal environment based on the modified couple stress theory using finite element method.

Abstract

Purpose

The paper aims to the size-dependent analysis of functionally graded materials in thermal environment based on the modified couple stress theory using finite element method.

Design/methodology/approach

The element formulation is developed within the framework of the penalty unsymmetric finite element method (FEM) in that the C1 continuity requirement is satisfied in weak sense and thus, C0 continuous interpolation enhanced by independent nodal rotation is employed as the test function. Meanwhile, the trial function is designed based on the stress functions and the weighted residual method. Besides, the special Gauss quadrature scheme is employed for integrals of matrices in accordance with the graded variation of the material properties.

Findings

The numerical results reveal that in thermal environment, functionally graded materials exhibit better bending performance compared to homogeneous materials, Moreover, the findings also indicate that with an increase in MLSP, the natural frequencies of out-of-plane modes gradually increase, while the natural frequencies of in-plane modes show much less variation, leading to a mode switch phenomenon.

Originality/value

The work provides an efficient numerical tool for analyzing and designing the functionally graded structures in thermal environment in practical engineering applications.

Details

Engineering Computations, vol. 41 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 August 2023

Sohit Jatain, Sunita Deswal and Kapil Kumar Kalkal

The purpose of this paper is to establish a two-dimensional model of Green–Lindsay theory for micropolar magneto-thermoelastic medium to study the photothermal effect. The model…

Abstract

Purpose

The purpose of this paper is to establish a two-dimensional model of Green–Lindsay theory for micropolar magneto-thermoelastic medium to study the photothermal effect. The model is used to study the coupling between elastic waves and plasma waves generated due to thermal changes in a micropolar elastic medium.

Design/methodology/approach

Normal mode analysis is used to obtain the analytical solutions of the governing equations.

Findings

Effects of magnetic field, micropolarity, photothermal and time are highlighted on various physical fields such as stresses, temperature, displacement and carrier density. The above physical fields also conform to the boundary conditions. It is further observed that all the physical quantities become zero outside some bounded region of space, thus confirming the notion of generalized theory of thermoelasticity.

Originality/value

The values of physical fields are computed numerically using MATLAB software considering material constants for silicon. Furthermore, the effects are depicted graphically and analyzed accordingly. The study is valuable for the analysis of thermoelastic problems involving magnetic field, micropolarity and elastic deformations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 January 2024

Shaonan Shi, Feixiang Tang, Yongqiang Yu, Yuzheng Guo, Fang Dong and Sheng Liu

Hoping to uncover the physical principles of the vibration of the functionally graded material (FGM) microplate, by which the authors can make contributions to the design and…

Abstract

Purpose

Hoping to uncover the physical principles of the vibration of the functionally graded material (FGM) microplate, by which the authors can make contributions to the design and manufacturing process in factories like micro-electro-mechanical system (MEMS) and other industries.

Design/methodology/approach

The authors design a method by establishing a reasonable mathematical model of the physical microplate composed of a porous FGM.

Findings

The authors discover that the porosity, the distributions of porosity, the power law of the FGM and the length-to-thickness ratio all affect the natural frequency of the vibration of the microplate, but in different ways.

Originality/value

Originally proposed a model of the micro FGM plate considering the different distributions of the porosity and scale effect and analyzed the vibration frequency of it.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 23 August 2024

Yunhao Li, Qian Wei and Luxian Li

We use the extended finite element method (XFEM) to model the whole process of initiation and propagation of cracks in the inner dense pyrolytic carbon (IPyC) layer of…

Abstract

Purpose

We use the extended finite element method (XFEM) to model the whole process of initiation and propagation of cracks in the inner dense pyrolytic carbon (IPyC) layer of tri-structural isotropic (TRISO) particle induced by the microdefect in an irradiation-induced thermomechanical coupling environment and study the effect of microdefect sizes on the propagation path.

Design/methodology/approach

The irradiation-induced thermal–mechanical coupling analysis is first conducted for the representative volume element (RVE) of the TRISO particle by using the conventional finite element method (CFEM) so that the stress distribution is obtained. The stress results are then restored for the enriched elements, and the simulation of crack initiation and propagation is eventually carried out by using the XFEM.

Findings

1. As a crack initiates in the IPyC layer, it will terminate at the free edge of the RVE TRISO particle in the end. 2. The size of the microdefect has a significant impact on the propagation path.

Originality/value

The ceramic dispersion microencapsulated (CDM) fuel is a good accident-resistant fuel whose safe operation is crucial to the safety and reliability of the whole nuclear reactor. It is of great scientific significance and practical value to study the irradiation-induced thermomechanical coupling stress distribution and cracking behavior in the IPyC layer of TRISO particles for the CDM fuel. Crack initiation and propagation analysis is challengeable for this complex multi-layer structure. This can help understand the failure mechanism of TRISO particles and evaluate the operation safety of the reactor.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 March 2024

U.S. Mahabaleshwar, Mahesh Rudraiah, Huang Huang and Bengt Ake Sunden

The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is…

Abstract

Purpose

The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is expanding and contracting while applying mass transpiration and velocity slip conditions to the flow. The nanofluid, which is composed of Au, Ag and Cu nanoparticles dispersed in water as the base fluid, possesses critical properties for increasing the heat transfer rate and is frequently used in manufacturing and industrial establishments.

Design/methodology/approach

The set of governing nonlinear partial differential equations is transformed into a set of nonlinear ordinary differential equations. The outcome of this differential equation is solved and obtained the closed-form solution and energy equation in the form of hypergeometric functions.

Findings

The velocity, micro-rotation and temperature field are investigated versus a parametric variation. The physical domains of mass suction or injection and micropolar characteristics play an important role in specifying the presence, singleness and multiplanes of exact solutions. In addition, many nondimensional characteristics of the profiles of temperature, angular velocity and velocity profiles are graphically shown with substantial consequences. Furthermore, adding nanoparticles increases the heat transfer rate of the fluid used in manufacturing and industrial establishments. The current findings may be used for better oil recovery procedures, smart materials such as magnetorheological fluids, targeted medicine administration and increased heat transmission. Concerning environmental cleanup, nanomaterial fabrication and biomedical devices, demonstrate their potential influence in a variety of disciplines.

Originality/value

The originality of this paper is to analyze the impact of inclined MHD at an angle with the ternary nanofluid on a micropolar fluid over an expanding and contracting sheet with thermal radiation effect.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 October 2023

MD. Shamshuddin, Anwar Saeed, S.R. Mishra, Ramesh Katta and Mohamed R. Eid

Whilst a modest number of investigations have been undertaken concerning nanofluids (NFs), the exploration of fluid flow under exponentially stretching velocities using NFs…

Abstract

Purpose

Whilst a modest number of investigations have been undertaken concerning nanofluids (NFs), the exploration of fluid flow under exponentially stretching velocities using NFs remains comparatively uncharted territory. This work presents a distinctive contribution through the comprehensive examination of heat and mass transfer phenomena in the NF ND–Cu/H2O under the influence of an exponentially stretching velocity. Moreover, the investigation delves into the intriguing interplay of gyrotactic microorganisms and convective boundary conditions within the system.

Design/methodology/approach

Similarity transformations have been used on PDEs to convert them into dimensionless ODEs. The solution is derived by using the homotopy analysis method (HAM). The pictorial notations have been prepared for sundry flow parameters. Furthermore, some engineering quantities are calculated in terms of the density of motile microbes, Nusselt and Sherwood numbers and skin friction, which are presented in tabular form.

Findings

The mixed convection effect associated with the combined effect of the buoyancy ratio, bioconvection Rayleigh constant and the resistivity due to the magnetization property gives rise to attenuating the velocity distribution significantly in the case of hybrid nanoliquid. The parameters involved in the profile of motile microorganisms attenuate the profile significantly.

Practical implications

The current simulations have uncovered fascinating discoveries about how metallic NFs behave near a stretched surface. These insights give us valuable information about the characteristics of the boundary layer close to the surface under exponential stretching.

Originality/value

The novelty of the current investigation is the analysis of NF ND–Cu/H2O along with an exponentially stretching velocity in a system with gyrotactic microorganisms. The investigation of fluid flow at an exponentially stretching velocity using NFs is still relatively unexplored.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 July 2024

Anand Kumar Yadav, Hari Shankar Mahato, Sangeeta Kumari and Pawel Jurczak

This study aims to examine the plane wave reflection problem in micropolar orthotropic magneto-thermoelastic half space, considering the influence of impedance as a boundary in a…

Abstract

Purpose

This study aims to examine the plane wave reflection problem in micropolar orthotropic magneto-thermoelastic half space, considering the influence of impedance as a boundary in a nonlocal elasticity.

Design/methodology/approach

This study presents the novel formulation of governing partial differential equations for micropolar orthotropic medium with impact of nonlocal thermo-elasticity under magnetic field.

Findings

This study provides the numerical results validation for a particular numerical data and expression for the amplitude ratios of reflected waves and identifies the existence of four different waves, namely, quasi longitudinal displacement qCLD-wave, quasi thermal wave qCT-wave, quasi transverse displacement qCTD-wave and quasi-transverse micro-rotational qCTM-wave. The study derives the velocity equation giving the speed and phase velocity of these waves. The study also shows that the small-scale size effect gives significant impact on phase velocity.

Research limitations/implications

The graphical analysis examines the variation of speeds and coefficients of attenuation of these waves due to frequency, magnetic field and nonlocal parameters. Also, significant conclusions on the variation of reflection coefficient against nonlocal parameter, frequency, impedance parameter and angle of incidence are provided graphically.

Practical implications

The creation of more effective micropolar orthotropic anisotropic materials which are very useful in the daily life and their applications in earth science are greatly impacted by the findings of this study.

Originality/value

The authors of the submitted document initiated and produced it collectively, with equal contributions from all members.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 February 2024

Rajesh Shah, Blerim Gashi, Vikram Mittal, Andreas Rosenkranz and Shuoran Du

Tribological research is complex and multidisciplinary, with many parameters to consider. As traditional experimentation is time-consuming and expensive due to the complexity of…

Abstract

Purpose

Tribological research is complex and multidisciplinary, with many parameters to consider. As traditional experimentation is time-consuming and expensive due to the complexity of tribological systems, researchers tend to use quantitative and qualitative analysis to monitor critical parameters and material characterization to explain observed dependencies. In this regard, numerical modeling and simulation offers a cost-effective alternative to physical experimentation but must be validated with limited testing. This paper aims to highlight advances in numerical modeling as they relate to the field of tribology.

Design/methodology/approach

This study performed an in-depth literature review for the field of modeling and simulation as it relates to tribology. The authors initially looked at the application of foundational studies (e.g. Stribeck) to understand the gaps in the current knowledge set. The authors then evaluated a number of modern developments related to contact mechanics, surface roughness, tribofilm formation and fluid-film layers. In particular, it looked at key fields driving tribology models including nanoparticle research and prosthetics. The study then sought out to understand the future trends in this research field.

Findings

The field of tribology, numerical modeling has shown to be a powerful tool, which is both time- and cost-effective when compared to standard bench testing. The characterization of tribological systems of interest fundamentally stems from the lubrication regimes designated in the Stribeck curve. The prediction of tribofilm formation, film thickness variation, fluid properties, asperity contact and surface deformation as well as the continuously changing interactions between such parameters is an essential challenge for proper modeling.

Originality/value

This paper highlights the major numerical modeling achievements in various disciplines and discusses their efficacy, assumptions and limitations in tribology research.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0076/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 50