Search results

1 – 10 of 137
Article
Publication date: 11 January 2024

Qiang Sun, Quantong Jiang, Siwei Wu, Chang Liu, Heng Tang, L. Song, Hao Shi, Jizhou Duan and BaoRong Hou

The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large…

Abstract

Purpose

The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large concentration gradient.

Design/methodology/approach

The macroscopic and microscopic morphology, thickness, surface roughness, chemical composition and structure of the coating were characterized by different characterization methods. The corrosion resistance of the film was studied by electrochemical and scanning Kelvin probe force microscopy. The results show that the addition of ZnO can significantly improve the compactness and corrosion resistance of the MAO coating, but the high concentration of ZnO will cause microcracks, which will reduce the corrosion resistance to a certain extent.

Findings

When the concentration of zinc oxide is 8 g/L, the compactness and corrosion resistance of the coating are the best, and the thickness of the coating is positively correlated with the concentration of ZnO.

Research limitations/implications

Too high concentration of ZnO reduces the performance of MAO coating.

Practical implications

The MAO coating prepared by adding ZnO has good corrosion resistance. Combined with organic coatings, it can be applied in corrosive marine environments, such as ship parts and hulls. To a certain extent, it can reduce the economic loss caused by corrosion.

Originality/value

The effect of ZnO on the corrosion resistance of MAO coating in electrolyte solution was studied systematically, and the conclusion was new to the common knowledge.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 February 2024

Xiaowen Chen, Wanlin Xie, Song Tang, Meng Zhang, Hao Song, Qingzheng Ran and Defen Zhang

The purpose of this study is to examine the impact of MoS2 on the microstructure and characteristics of micro-arc oxidized (MAO) ceramic coatings created on ZK60 magnesium alloy…

Abstract

Purpose

The purpose of this study is to examine the impact of MoS2 on the microstructure and characteristics of micro-arc oxidized (MAO) ceramic coatings created on ZK60 magnesium alloy through the addition of varying concentrations of MoS2 particles to the electrolyte, aiming to enhance the corrosion resistance of magnesium alloy.

Design/methodology/approach

The surface morphology, roughness and phase composition of the coatings were analyzed using scanning electron microscopy, a hand-held roughness tester and an X-ray diffractometer, respectively, and the corrosion resistance of the MAO coatings prepared by the addition of different contents of MoS2 particles was tested and analyzed using an electrochemical workstation.

Findings

The results demonstrate that MoS2/MgO composite coatings have been successfully prepared on the surface of magnesium alloys through micro-arc oxidation. Furthermore, the corrosion resistance of the ZK60 magnesium alloy prepared with the addition of 1.0 g/L MoS2 was the best compared to the other samples.

Originality/value

MoS2 particles were able to penetrate the coatings successfully during the micro-arc oxidation process, acting as a barrier in the micropores to prevent the corrosion medium from touching the surface, thus improving the corrosion resistance of the sample. The electrochemical workstation was used to study the corrosion resistance of the MoS2/MAO coating on the ZK60 magnesium alloy.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 23 February 2024

Guangwei Liang, Zhiming Gao, Cheng-Man Deng and Wenbin Hu

The purpose of this study is to reveal the effect of nano-Al2O3 particle addition on the nucleation/growth kinetics, microhardness, wear resistance and corrosion resistance of…

Abstract

Purpose

The purpose of this study is to reveal the effect of nano-Al2O3 particle addition on the nucleation/growth kinetics, microhardness, wear resistance and corrosion resistance of Co–P–xAl2O3 nanocomposite plating.

Design/methodology/approach

The kinetics and properties of Co–P–xAl2O3 nanocomposite plating prepared by electroplating were investigated by electrochemical measurements, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Vickers microhardness measurement, SRV5 friction and wear tester and atomic force microscopy.

Findings

A 12 g/L nano-Al2O3 addition in the plating solution can transform the nucleation/growth kinetics of the plating from the 3D progressive model to the 3D instantaneous model. The microhardness of the plating increased with the increase of nano-Al2O3 content in plating. The wear resistance of the plating did not adhere strictly to Archard’s law. An even and denser corrosion product film was generated due to the finer grains, with a high corrosion resistance.

Originality/value

The effect of different nano-Al2O3 addition on the nucleation/growth kinetics and properties of Co–P–xAl2O3 nanocomposite plating was investigated, and an anticorrosion mechanism of Co–P–xAl2O3 nanocomposite plating was proposed.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 22 April 2024

Sixian Rao, Changwei Zhang, Fei Zhao, Lei Bao and Xiaoyi Wang

This paper aims to explore the influence of corrosion-deformation interactions (CDI) on the corrosion behavior and mechanisms of 316LN under applied tensile stresses.

Abstract

Purpose

This paper aims to explore the influence of corrosion-deformation interactions (CDI) on the corrosion behavior and mechanisms of 316LN under applied tensile stresses.

Design/methodology/approach

Corrosion of metals would be aggravated by CDI under applied stress. Notably, the presence of nitrogen in 316LN austenitic stainless steel (SS) would enhance the corrosion resistance compared to the nitrogen-absent 316L SS. To clarify the CDI behaviors, electrochemical corrosion experiments were performed on 316LN specimens under different applied stress levels. Complementary analyses, including three-dimensional morphological examinations by KH-7700 digital microscope and scanning electron microscopy coupled with energy dispersive spectroscopy, were conducted to investigate the macroscopic and microscopic corrosion morphology and to characterize the composition of corrosion products within pits. Furthermore, ion chromatography was used to analyze the solution composition variations after immersion corrosion tests of 316LN in a 6 wt.% FeCl3 solution compared to original FeCl3 solution. Electrochemical experiment results revealed the linear decrease in free corrosion potential with increasing applied stress. Electrochemical impedance spectroscopy results indicated that high tensile stress level damaged the integrity of passivation film, as evidenced by the remarkable reduction in electrochemical impedance. Ion chromatography analyses proved the concentrations increase of NO3 and NH4+ ion concentrations in the corrosion media after corrosion tests.

Findings

The enhanced corrosion resistance of 316LN SS is attributable to the presence of nitrogen.

Research limitations/implications

The scope of this study is confined to the influence of tensile stress on the electrochemical corrosion of 316LN at ambient temperatures; it does not encompass the potential effects of elevated temperatures or compressive stress.

Practical implications

The resistance to stress electrochemical corrosion in SS may be enhanced through nitrogen alloying.

Originality/value

This paper presents a systematic investigation into the stress electrochemical corrosion of 316LN, marking the inaugural study of its impact on corrosion behaviors and underlying mechanisms.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 April 2024

Yaqi Diao, Jihui Wang, Renhong Song, Xue Fei, Zhichang Xue and Wenbin Hu

The purpose of this paper is to prepare a multifunctional nanocomposite that is slow-release and resistant to seawater corrosion and biofouling corrosion and to explore the…

Abstract

Purpose

The purpose of this paper is to prepare a multifunctional nanocomposite that is slow-release and resistant to seawater corrosion and biofouling corrosion and to explore the synergistic effect between the two corrosion inhibitors.

Design/methodology/approach

The morphology, structure and release properties of CAP@HNTs, BTA@HNTs and CAP/BTA@HNTs were investigated by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, specific surface area analysis and UV spectrophotometry. The corrosion resistance and antimicrobial properties were investigated by electrochemical measurements and bioinhibition rate tests, and the synergistic effect between the two corrosion inhibitors was explored by X-ray photoelectron spectroscopy.

Findings

The CAP/BTA@HNTs are responsive to acidic environments and have significantly improved antibacterial and corrosion resistance compared with CAP@HNTs and BTA@HNTs. CAP and BTA have a positive synergistic effect on anticorrosion and antifouling.

Originality/value

Two types of inhibitors, anticorrosion and antifouling, were loaded into the same nanocontainer to prepare a slow-releasable and multifunctional nanocomposite with higher resistance to seawater corrosion and biocorrosion and to explore the synergistic effect of CAP and BTA on corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 February 2024

Shuangjiu Deng, Chang Li, Xing Han, Menghui Yu and Han Sun

The restoration and strengthening of QT600 is an industry bottleneck challenge. The Co-12 cladding layer has great wear and corrosion resistance. The purpose of this paper is to…

Abstract

Purpose

The restoration and strengthening of QT600 is an industry bottleneck challenge. The Co-12 cladding layer has great wear and corrosion resistance. The purpose of this paper is to quantitatively reveal the transient evolution law of the corrosion process of Co-12 cladding layer on QT600 surface.

Design/methodology/approach

In this paper, a three-dimensional numerical model of the corrosion process of Co-12 cladding layer by QT600 laser cladding is established. The interaction between pitting pits and corrosion medium is considered to reveal the transient evolution of ion concentration, electrode potential, pH and corrosion rate at different locations.

Findings

The calculation shows that the ion concentration in pitting pit changes Cl>Co2+>Na+, pH value decreases from top to bottom and corrosion rate at bottom is greater than that at top. The electrochemical corrosion test of Co-12 cladding layer was carried out. It is shown that the current density of QT600 increases by an order of magnitude compared to the Co-12 cladding layer, and the corrosion rate is 4.862 times higher than that of the cladding layer.

Originality/value

The results show that Co-12 cladding layer has great corrosion resistance, which provides an effective way for QT600 protection.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 24 April 2024

Vahid Ahmadi, Seyed Mohammad Ali Hosseini, Effat Jamalizadeh and Razie Naghizade

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on…

Abstract

Purpose

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on 7075 aluminum alloy in 3.5% NaCl solution.

Design/methodology/approach

Aluminum alloys were dipped into ceria sol and ceria sol modified by ZnO nanoparticles separately and removed after 10 min from the solutions and dried at 110°C for 30 min and heated at 500 °C for 30 min to form the coatings. The coatings have been characterized by using field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The EIS tests were performed in a corrosive solution of 3.5% NaCl.

Findings

The results showed that the coating of ceria sol modified by ZnO nanoparticles has higher corrosion resistance than the ceria sol coating and the bare sample. Also, the best efficiency is related to aluminum sample immersion after 1 h in NaCl corrosive solution for coating modified by ZnO nanoparticles.

Originality/value

In this research, the modification of ceria sol coating by ZnO nanoparticles had an effect on improving the corrosion behavior of aluminum alloy. It is also understood that modification of coatings is an effective parameter on corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 December 2023

Raghad Ahmed Alaloosi, Onur Çomakli, Mustafa Yazici and Ziad A. Taha

This paper aims to investigate the influence of scan speed on the corrosion and tribocorrosion features of the CoCrMoW samples fabricated via the selective laser melting (SLM…

Abstract

Purpose

This paper aims to investigate the influence of scan speed on the corrosion and tribocorrosion features of the CoCrMoW samples fabricated via the selective laser melting (SLM) process.

Design/methodology/approach

CoCrMoW samples were produced by SLM at different scan speeds. Produced samples were made via structural surveys (X-ray diffraction examinations and scanning electron microscopic analyses), hardness measurements and electrochemical and tribocorrosion experiments.

Findings

Outcomes displayed that the corrosion and tribocorrosion properties of CoCrMoW alloy were significantly influenced by scanning speeds. Also, these properties of the alloy increased with increasing scanning speeds. CoCrMoW samples produced at a laser scan speed of 1,000 mm/s showed the best resistance to corrosion and tribocorrosion. This could be related to the high hardness and low grain structure of the fabricated samples.

Originality/value

This paper may be a practical reference and offers insight into the effect of scanning speeds on the increase of hardness, tribological and corrosion performance of CoCrMoW alloys. This study can help in the further advancement of cobalt-chromium alloy in situ produced by SLM for both electrochemical and tribocorrosion behavior for biomedical applications.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 January 2024

Meigui Yin, Lei Zhang and Longxiang Huang

The purpose of this paper is to study the effect of surface salt spray duration on the fretting wear and electrochemical corrosion behaviors of Inconel 690 alloy.

Abstract

Purpose

The purpose of this paper is to study the effect of surface salt spray duration on the fretting wear and electrochemical corrosion behaviors of Inconel 690 alloy.

Design/methodology/approach

A high-temperature steam generator was applied to salt spray test samples, a fretting wear rig was used to realize the damage behavior tests, an electrochemical workstation was applied to analysis the changes of each sample’s corrosion dynamic response before and after fretting wear.

Findings

The thickness of the oxide film that formed on sample surface was increased with the salt spray duration, and somewhat it could act as lubrication during the fretting wear process; however, the corrosive chloride would accelerate the fretting mechanical damage behavior.

Originality/value

In a salt steam spray condition, the fretting tribo-corrosion behaviors of Inconel 690 alloy surface was studied.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 137