Search results

1 – 10 of 59
Article
Publication date: 26 April 2024

Yansen Wu, Dongsheng Wen, Anmin Zhao, Haobo Liu and Ke Li

This study aims to study the thermal identification issue by harvesting both solar energy and atmospheric thermal updraft for a solar-powered unmanned aerial vehicle (SUAV) and…

Abstract

Purpose

This study aims to study the thermal identification issue by harvesting both solar energy and atmospheric thermal updraft for a solar-powered unmanned aerial vehicle (SUAV) and its electric energy performance under continuous soaring conditions.

Design/methodology/approach

The authors develop a specific dynamic model for SUAVs in both soaring and cruise modes. The support vector machine regression (SVMR) is adopted to estimate the thermal position, and it is combined with feedback control to implement the SUAV soaring in the updraft. Then, the optimal path model is built based on the graph theory considering the existence of several thermals distributed in the environment. The procedure is proposed to estimate the electricity cost of SUAV during flight as well as soaring, and making use of dynamic programming to maximize electric energy.

Findings

The simulation results present the integrated control method could allow SUAV to soar with the updraft. In addition, the proposed approach allows the SUAV to fly to the destination using distributed thermals while reducing the electric energy use.

Originality/value

Two simplified dynamic models are constructed for simulation considering there are different flight mode. Besides, the data-driven-based SVMR method is proposed to support SUAV soaring. Furthermore, instead of using length, the energy cost coefficient in optimization problem is set as electric power, which is more suitable for SUAV because its advantage is to transfer the three-dimensional path planning problem into the two-dimensional.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 April 2024

Cheng Xiong, Bo Xu and Zhenqian Chen

This study aims to investigate the rarefaction effects on flow and thermal performances of an equivalent sand-grain roughness model for aerodynamic thrust bearing.

Abstract

Purpose

This study aims to investigate the rarefaction effects on flow and thermal performances of an equivalent sand-grain roughness model for aerodynamic thrust bearing.

Design/methodology/approach

In this study, a model of gas lubrication thrust bearing was established by modifying the wall roughness and considering rarefaction effect. The flow and lubrication characteristics of gas film were discussed based on the equivalent sand roughness model and rarefaction effect.

Findings

The boundary slip and the surface roughness effect lead to a decrease in gas film pressure and temperature, with a maximum decrease of 39.2% and 8.4%, respectively. The vortex effect present in the gas film is closely linked to the gas film’s pressure. Slip flow decreases the vortex effect, and an increase in roughness results in the development of slip flow. The increase of roughness leads to a decrease for the static and thermal characteristics.

Originality/value

This work uses the rarefaction effect and the equivalent sand roughness model to investigate the lubrication characteristics of gas thrust bearing. The results help to guide the selection of the surface roughness of rotor and bearing, so as to fully control the rarefaction effect and make use of it.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 October 2023

Gokulnath R. and Booma Devi

Diesel has traditionally been considered the best-suited and most widely used fuel in various sectors, including manufacturing industries, power production, automobiles and…

Abstract

Purpose

Diesel has traditionally been considered the best-suited and most widely used fuel in various sectors, including manufacturing industries, power production, automobiles and transportation. However, with the ongoing crisis of fossil fuel inadequacy, the search for alternative fuels and their application in these sectors has become increasingly important. One particularly interesting and beneficial alternative fuel is biodiesel derived from bio sources.

Design/methodology/approach

In this research, an attempt was made to use biodiesel in an unconventional micro gas turbine engine. It will remove the concentric use of diesel engines for power production by improving fuel efficiency as well as increasing the power production rate. Before the fuel is used enormously, it has to be checked in many ways such as performance, emission and combustion analysis experimentally.

Findings

In this paper, a detailed experimental study was made for the use of Spirulina microalgae biodiesel in a micro gas turbine. A small-scale setup with the primary micro gas turbine and secondary instruments such as a data acquisition system and AVL gas analyser. The reason for selecting the third-generation microalgae is due to its high lipid and biodiesel production rate. For the conduction of experimental tests, certain conditions were followed in addition that the engine rotating rpm was varied from 4,000, 5,000 and 6,000 rpm. The favourable and predicted results were obtained with the use of microalgae biodiesel.

Originality/value

The performance and combustion results were not exactly equal or greater for biodiesel blends but close to the values of pure diesel; however, the reduction in the emission of CO was at the appreciable level for the used spirulina microalgae biodiesel. The emission of nitrogen oxides and carbon dioxide was a little higher than the use of pure diesel. This experimental analysis results proved that the use of spirulina microalgae biodiesel is both economical and effective replacement for fossil fuel.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 September 2023

Nedal Assad, Aziz Jaafar and Panagiotis D. Zervopoulos

This study aims to comprehensively examine the relationship between financial reporting quality (FRQ) and investment efficiency (IE). The central thrust of this research endeavor…

Abstract

Purpose

This study aims to comprehensively examine the relationship between financial reporting quality (FRQ) and investment efficiency (IE). The central thrust of this research endeavor is to empirically analyze the impact of FRQ on diverse facets of investment, including overinvestment, underinvestment and overall IE.

Design/methodology/approach

Using a sample of 13,902 firm-year observations from publicly listed US companies, this study uses the generalized method of moment (GMM) in conjunction with three distinct measures for FRQ under three different investment settings, considering firm liquidity and industry performance.

Findings

This study offers interesting insights into the intricate relationship between FRQ and IE. The results indicate a strong positive relation between the two constructs. In particular, the research reveals a negative link between FRQ and underinvestment, and an inverse relationship between FRQ and overinvestment. These findings suggest that FRQ is one of the key drivers of IE and that by enhancing FRQ, businesses can better optimize their investments.

Practical implications

This study highlights the significant implication of the effect of FRQ on IE, as it enables businesses to optimize their investments by improving their decision-making processes and better risk assessment of associated projects, resulting in more efficient capital allocation. A higher degree of FRQ increases investors’ confidence in a company’s financial statements, resulting in higher liquidity. It can benefit regulators to set higher standards and promote transparency.

Originality/value

The study examines the relationship between FRQ and IE. The study finds a strong positive relation between FRQ and IE, with FRQ being a key driver of IE. The paper’s original contribution lies in its comprehensive examination of the complex relationship between FRQ and IE, using robust analytical techniques by applying GMM and taking into consideration firms liquidity and industry performance.

Details

Journal of Financial Reporting and Accounting, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-2517

Keywords

Article
Publication date: 15 February 2023

Mehmet Necati Cizrelioğullari, Tapdig Veyran Imanov, Tugrul Gunay and Aliyev Shaiq Amir

Temperature anomalies in the upper troposphere have become a reality as a result of global warming, which has a noticeable impact on aircraft performance. The purpose of this…

Abstract

Purpose

Temperature anomalies in the upper troposphere have become a reality as a result of global warming, which has a noticeable impact on aircraft performance. The purpose of this study is to investigate the total air temperature (TAT) anomaly observed during the cruise level and its impact on engine parameter variations.

Design/methodology/approach

Empirical methodology is used in this study, and it is based on measurements and observations of anomalous phenomena on the tropopause. The primary data were taken from the Boeing 747-8F's enhanced flight data recorder, which refers to the quantitative method, while the qualitative method is based on a literature review and interviews. The GEnx Integrated Vehicle Health Management system was used for the study's evaluation of engine performance to support the complete range of operational priorities throughout the entire engine lifecycle.

Findings

The study's findings indicate that TAT and SAT anomalies, which occur between 270- and 320-feet flight level, have a substantial impact on aircraft performance at cruise altitude and, as a result, on engine parameters, specifically an increase in fuel consumption and engine exhaust gas temperature values. The TAT and Ram Rise anomalies were the focus of the atmospheric deviations, which were assessed as major departures from the International Civil Aviation Organizations–defined International Standard Atmosphere, which is obvious on a positive tendency and so goes against the norms.

Research limitations/implications

Necessary fixed flight parameters gathered from the aircraft's enhanced airborne flight recorder (EAFR) via Aeronautical Radio Incorporated (ARINC) 664 Part 7 at a certain velocity and altitude interfacing with the diagnostic program direct parameter display (DPD), allow for analysis of aircraft performance in a real-time frame. Thus, processed data transmits to the ground maintenance infrastructure for future evaluation and for proper maintenance solutions.

Originality/value

A real-time analysis of aircraft performance is possible using the diagnostic program DPD in conjunction with necessary fixed flight parameters obtained from the aircraft's EAFR via ARINC 664 Part 7 at a specific speed and altitude. Thus, processed data is transmitted to the ground infrastructure for maintenance to be evaluated in the future and to find the best maintenance fixes.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 May 2024

Bikesh Manandhar, Thanh-Canh Huynh, Pawan Kumar Bhattarai, Suchita Shrestha and Ananta Man Singh Pradhan

This research is aimed at preparing landslide susceptibility using spatial analysis and soft computing machine learning techniques based on convolutional neural networks (CNNs)…

Abstract

Purpose

This research is aimed at preparing landslide susceptibility using spatial analysis and soft computing machine learning techniques based on convolutional neural networks (CNNs), artificial neural networks (ANNs) and logistic regression (LR) models.

Design/methodology/approach

Using the Geographical Information System (GIS), a spatial database including topographic, hydrologic, geological and landuse data is created for the study area. The data are randomly divided between a training set (70%), a validation (10%) and a test set (20%).

Findings

The validation findings demonstrate that the CNN model (has an 89% success rate and an 84% prediction rate). The ANN model (with an 84% success rate and an 81% prediction rate) predicts landslides better than the LR model (with a success rate of 82% and a prediction rate of 79%). In comparison, the CNN proves to be more accurate than the logistic regression and is utilized for final susceptibility.

Research limitations/implications

Land cover data and geological data are limited in largescale, making it challenging to develop accurate and comprehensive susceptibility maps.

Practical implications

It helps to identify areas with a higher likelihood of experiencing landslides. This information is crucial for assessing the risk posed to human lives, infrastructure and properties in these areas. It allows authorities and stakeholders to prioritize risk management efforts and allocate resources more effectively.

Social implications

The social implications of a landslide susceptibility map are profound, as it provides vital information for disaster preparedness, risk mitigation and landuse planning. Communities can utilize these maps to identify vulnerable areas, implement zoning regulations and develop evacuation plans, ultimately safeguarding lives and property. Additionally, access to such information promotes public awareness and education about landslide risks, fostering a proactive approach to disaster management. However, reliance solely on these maps may also create a false sense of security, necessitating continuous updates and integration with other risk assessment measures to ensure effective disaster resilience strategies are in place.

Originality/value

Landslide susceptibility mapping provides a proactive approach to identifying areas at higher risk of landslides before any significant events occur. Researchers continually explore new data sources, modeling techniques and validation approaches, leading to a better understanding of landslide dynamics and susceptibility factors.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 April 2024

Qingyang Wang, Weifeng Wu, Ping Zhang, Chengqiang Guo and Yifan Yang

To guide the stable radius clearance choice of water-lubricated bearings for single screw compressors, this paper aims to analyze the effects of turbulence and cavitation on…

Abstract

Purpose

To guide the stable radius clearance choice of water-lubricated bearings for single screw compressors, this paper aims to analyze the effects of turbulence and cavitation on bearing performance under two conditions of specified external load and radius clearance.

Design/methodology/approach

A modified Reynolds equation considering turbulence and cavitation is adopted, based on the Jakobsson–Floberg–Olsson boundary condition, Ng–Pan model and turbulent factors. The equation is solved using the finite difference method and successive over-relaxation method to investigate the bearing performance.

Findings

The turbulent effect can increase the hydrodynamic pressure and cavitation. In addition, the turbulent effect can lead to an increase in the equilibrium radius clearance. The turbulent region exhibits a higher load capacity and cavitation rate. However, the increased cavitation negatively impacts the frictional coefficient and end flow rate. The impact of turbulence increases as the radius clearance decreases. As the rotating speed increases, the turbulence effect has a greater impact on the bearing characteristics.

Originality/value

The research can provide theoretical support for the design of water-lubricated journal bearings used in high-speed water-lubricated single screw compressors.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0029/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 29 January 2021

Orlando Troisi, Anna Visvizi and Mara Grimaldi

The purpose of this paper is to explore the emergence of innovation in smart service systems to conceptualize how actor’s relationships through technology-enabled interactions can…

2934

Abstract

Purpose

The purpose of this paper is to explore the emergence of innovation in smart service systems to conceptualize how actor’s relationships through technology-enabled interactions can give birth to novel technologies, processes, strategies and value. The objectives of the study are: to detect the different enablers that activate innovation in smart service systems; and to explore how these can lead dynamically to the emergence of different innovation patterns.

Design/methodology/approach

The empirical research adopts an approach based on constructivist grounded theory, performed through observation and semi-structured interviews to investigate the development of innovation in the Italian CTNA (Italian acronym of National Cluster for Aerospace Technology).

Findings

The identification and re-elaboration of the novelties that emerged from the analysis of the Cluster allow the elaboration of a diagram that classifies five different shades of innovation, introduced through some related theoretical propositions: technological; process; business model and data-driven; social and eco-sustainable; and practice-based.

Originality/value

The paper embraces a synthesis view that detects the enabling structural and systems dimensions for innovation (the “what”) and the way in which these can be combined to create new technologies, resources, values and social rules (the “how” dimension). The classification of five different kinds of innovation can contribute to enrich extant research on value co-creation and innovation and can shed light on how given technologies and relational strategies can produce varied innovation outcomes according to the diverse stakeholders engaged.

Details

Journal of Business & Industrial Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0885-8624

Keywords

Article
Publication date: 6 November 2023

Veronica Hoi In Fong, Xueying (Linda) Lin, IpKin Anthony Wong and Matthew Tingchi Liu

This study aims to use organizational fashion to underscore a novel phenomenon in which products, services and practices fade in and out of the tourism/hospitality setting within…

Abstract

Purpose

This study aims to use organizational fashion to underscore a novel phenomenon in which products, services and practices fade in and out of the tourism/hospitality setting within a specific time frame. Drawing from the fashion theoretical strands in organization research, this paper studies how fashion has been conceptualized, operationalized and then diffused among tourism/hospitality enterprises.

Design/methodology/approach

A qualitative case design was used. A total of 37 semistructured in-depth interviews with executives of innovative tourism/hospitality companies (e.g. restaurants, hotels, theme parks and travel agencies) were conducted. This paper focuses on the organizational fashion phenomenon in which organizational trendsetters with creative, “hot” products/services have emerged prominently in the marketplace.

Findings

This inquiry illustrates a social phenomenon concerning the organizational fashion setting process by integrating existing production practices among different organizational suppliers in the hospitality sector. Different cases in the study show that fashion consists of a series of hybrid, paradoxical processes. These include conceptualization (conventionalization vs novelty, and personalization vs conformity), operationalization (bundling vs unbundling, and learning vs relearning) and diffusion (framing vs co-framing, and adaptation vs alteration).

Research limitations/implications

Throughout the three continuous processes, service design and identity development for consumption, as well as value creation and knowledge transformation for production, are carried out according to the decision of what is “hot” and what is “out” at a particular time. In essence, fashion helps to explain why hospitality institutions imitate specific innovations to take advantage of popular trends in the consumer market, as well as how such trends vanish eventually.

Originality/value

This research contributes the insight that organizations use fashion as a managerial initiative to translate their organizational goals and improvise nascent products and services. The fashion processes can be triggered by microlevel individual organizations and are spread through a series of social interactions to become macrolevel phenomena in a recurring manner.

Details

International Journal of Contemporary Hospitality Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-6119

Keywords

1 – 10 of 59