Search results

1 – 10 of 30
Article
Publication date: 20 September 2011

A.J. Chamkha, S.M.M. EL‐Kabeir and A.M. Rashad

The purpose of this paper is to consider heat and mass transfer by natural convection from a vertical cylinder in porous media for a temperature‐dependent fluid viscosity in the…

Abstract

Purpose

The purpose of this paper is to consider heat and mass transfer by natural convection from a vertical cylinder in porous media for a temperature‐dependent fluid viscosity in the presence of radiation and chemical reaction effects.

Design/methodology/approach

The governing equations are transformed into non‐similar differential equations and then solved numerically by an efficient finite‐difference method.

Findings

It is found that there are significant effects on the heat and mass transfer characteristics of the problem due to the variation of viscosity and radiation and chemical reaction effects.

Originality/value

The paper combines the effects of radiation, chemical reaction, non‐Darcy porous media effects along with the variation of viscosity with temperature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 August 2014

Sahin Ahmed and Ali J. Chamkha

The purpose of this paper is to develop and correct the problem studied by Makinde and Mhone (2005) to a rotating vertical porous channel immersed in a Darcian porous regime in…

Abstract

Purpose

The purpose of this paper is to develop and correct the problem studied by Makinde and Mhone (2005) to a rotating vertical porous channel immersed in a Darcian porous regime in presence of a strong transverse magnetic filled and with the application of thermal radiation. In this investigation, the fluid is considered to be of viscous, electrically conducting, Newtonian and radiating and is optically thin with a relatively low density. Excellent agreement is obtained for exact solutions with those of previously published works.

Design/methodology/approach

In this investigation, a closed form analytical method based on the complex notations for the velocity, temperature and the pressure is developed to solve the governing coupled, non-linear partial differential equations. The accuracy and effectiveness of the method are demonstrated.

Findings

Interestingly observed that, the Lorentizian body force is not act as a drag force as in conventional MHD flows, but as an aiding body force and this will serve to accelerate the flow and boost the primary velocities. Due to the large rotation of the channel, the primary velocities are become flattered and shift towards the walls of the channel. With a rise in Darcian drag force, flow velocity and shear stress are found to reduce. Moreover, increasing thermal radiation and rotation of the channel strongly depress the shear stress, and maximum flow reversal, i.e. back flow is observed due to large Darcian resistance, thermal radiation and rotation.

Research limitations/implications

The analysis is valid for unsteady, two-dimensional laminar flow of an optically thick no-gray gas, electrically conducting, and Newtonian fluid past an isothermal vertical surface adjacent to the Darcian regime with variable surface temperature. An extension to three-dimensional flow case is left for future work.

Practical implications

Practical interest of such study includes applications in magnetic control of molten iron flow in the steel industry, liquid metal cooling in nuclear reactors, magnetic suppression of molten semi-conducting materials and meteorology and in many branches of engineering and science. It is well known that the effect of thermal radiation is important in space technology and high-temperature processes. Thermal radiation also plays an important role in controlling heat transfer process in polymer processing industry.

Originality/value

The paper presents useful conclusions with the help of graphical results obtained from studying exact solutions based on complex notations for Darcian drag force, rotation of the channel and conduction-radiation heat transfer interaction by unsteady rotational flow in a vertical porous channel embedded in a Darcian porous regime under the application hydromagnetic force. The results of this study may be of interest to engineers for heat transfer augmentation and drag reduction in heat exchangers as well as MHD boundary layer control of re-entry vehicles, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 December 2023

Marjan Sharifi, Majid Siavashi and Milad Hosseini

Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex…

Abstract

Purpose

Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex porous media. In recent years, researchers have increasingly explored the use of porous media to improve the heat transfer processes. The lattice Boltzmann method (LBM) is one of the most effective techniques for simulating heat transfer in such media. However, the application of the LBM to study radiation in complex geometries that contain curved boundaries, as found in many porous media, has been limited.

Design/methodology/approach

The numerical evaluation of the effect of the radiation-conduction parameter and extinction coefficient on temperature and incident radiation distributions demonstrates that the proposed LBM algorithm provides highly accurate results across all cases, compared to those found in the literature or those obtained using the finite volume method (FVM) with the discrete ordinates method (DOM) for radiative information.

Findings

For the case with a conduction-radiation parameter equal to 0.01, the maximum relative error is 1.9% in predicting temperature along vertical central line. The accuracy improves with an increase in the conduction-radiation parameter. Furthermore, the comparison between computational performances of two approaches reveals that the LBM-LBM approach performs significantly faster than the FVM-DOM solver.

Originality/value

The difficulty of radiative modeling in combined problems involving irregular boundaries has led to alternative approaches that generally increase the computational expense to obtain necessary radiative details. To address the limitations of existing methods, this study presents a new approach involving a coupled lattice Boltzmann and first-order blocked-off technique to efficiently model conductive-radiative heat transfer in complex geometries with participating media. This algorithm has been developed using the parallel lattice Boltzmann solver.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 March 2009

Severino P.C. Marques, Ever J. Barbero and John S.R. Murillo

The purpose of this paper is to present a computationally efficient model to solve combined conduction/radiation heat transfer problems in absorbing, emitting, non‐scattering…

Abstract

Purpose

The purpose of this paper is to present a computationally efficient model to solve combined conduction/radiation heat transfer problems in absorbing, emitting, non‐scattering, non‐gray materials.

Design/methodology/approach

The model is formulated for steady‐state condition and based on an iterative approach where the medium is discretized into finite strips and the extinction spectrum is divided into finite bands to consider the extinction coefficient variation with the wavelength.

Findings

Temperature fields and heat flux distributions are presented to demonstrate the capability of the formulation. It is shown that the model is quite accurate and efficient even for the cases of pure radiation. Differently from other models, the number of iterations required by the model for convergence is very low, even in the cases dominated by radiation.

Originality/value

The model has great potential to contribute with the evaluation and design of materials for thermal insulation, where radiation heat transfer can be the dominant mechanism, such as aerogel materials which are recognized as the solids with the lowest thermal conductivity and are intended to be used in building and construction, aerospace, transportation and other applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1999

I. Rupp and C. Péniguel

In many industrial applications, convection radiation and conduction participate simultaneously to the heat transfers. A numerical approach able to cope with such problems has…

Abstract

In many industrial applications, convection radiation and conduction participate simultaneously to the heat transfers. A numerical approach able to cope with such problems has been developed. The code SYRTHES is tackling conduction and radiation (limited to non participating medium). Radiation is solved by a radiosity approach, and conduction by a finite element method. Accurate and efficient algorithms based on a mixing of analytical/numerical integration, and ray tracing techniques are used to compute the view factors. The fluid part is solved by CFD codes like ESTET (Finite volumes) or N3S (Finite elements). SYRTHES relies on an explicit numerical scheme to couple all the phenomena. No stability problems have been encountered. To provide further flexibility, the three phenomena are solved on three independent grids. All data transfers being automatically taken care of by SYRTHES. Illustrating applications are shown.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 9 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 March 2013

A.B. Ansari and S.A. Gandjalikhan Nassab

The purpose of this paper is to focus on thermal characteristics behavior of forced convection flow in a duct over forward facing step (FFS), in which all of the heat transfer…

Abstract

Purpose

The purpose of this paper is to focus on thermal characteristics behavior of forced convection flow in a duct over forward facing step (FFS), in which all of the heat transfer mechanisms, including convection, conduction and radiation, take place simultaneously in the fluid flow.

Design/methodology/approach

The fluid is treated as a gray, absorbing, emitting and scattering medium. The Navier‐Stokes and energy equations are solved numerically by computational fluid dynamics (CFD) techniques to obtain the velocity and temperature fields. Discretized forms of these equations are obtained by the finite volume method and solved using the SIMPLE algorithm. Since the gas is considered as a radiating medium, all of the convection, conduction and radiation heat transfer take place simultaneously in the gas flow. For computation of the radiative term in the gas energy equation, the radiative transfer equation (RTE) is solved numerically by the discrete ordinate method (DOM) to find the radiative heat flux distribution inside the radiating medium. By this numerical approach, the velocity, pressure and temperature fields are calculated.

Findings

The effect of wall emissivity, optical thickness, albedo coefficient and the radiation‐conduction parameter on heat transfer behavior of the system are also investigated. The numerical results for two cases of convection‐conduction and conduction‐radiation problems are compared with the available data published in open literature and good agreement was obtained.

Originality/value

This is the first time in which flow over FFS in a duct, considering all heat transfer mechanisms including conduction, convection and radiation, is solved numerically.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 2001

A. Raji and M. Hasnaoui

The interaction between mixed convection and thermal radiation in ventilated cavities with gray surfaces has been studied numerically using the Navier‐Stokes equations with the…

Abstract

The interaction between mixed convection and thermal radiation in ventilated cavities with gray surfaces has been studied numerically using the Navier‐Stokes equations with the Boussinesq approximation. The effect of thermal radiation on streamlines and isotherms is shown for different values of the governing parameters namely, the Rayleigh number (103 ≤ Ra ≤ 106), the Reynolds number (50 ≤ Re ≤ 5000) and the surfaces emissivity (0 ≤ ε≤ 1). The geometrical parameters are the aspect ratio of the cavity A = L’/H’ = 2 and the relative height of the openings B = h’/H’ = 1/4. Results of the study show that thermal radiation alters significantly the temperature distribution, the flow fields and the heat transfer across the active walls of the cavities.

Details

Engineering Computations, vol. 18 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 2014

Sofen K. Jena, Swarup K. Mahapatra and Amitava Sarkar

The current study aims to address the interaction between participating media radiation with thermo-gravitational convection of an electrically conducting fluid enclosed within a…

Abstract

Purpose

The current study aims to address the interaction between participating media radiation with thermo-gravitational convection of an electrically conducting fluid enclosed within a tilted enclosure under an externally imposed time-independent uniform magnetic field.

Design/methodology/approach

The differentially heated boundaries of the tilted enclosure are considered to be diffuse, gray and the enclosed fluid is assumed to be absorbing, emitting and isotropically scattering. The Navier-Stokes equations, meant for magneto convection are solved using modified MAC method. Gradient dependent consistent hybrid upwind scheme of second order is used for discretization of the convective terms. Discrete ordinate method, with S8 approximation, is used to model radiative transport equation in the presence of radiatively active medium.

Findings

Effect of uniform magnetic field with different magnitudes and orientations of cavity has been numerically simulated. The effect of participating media radiation has been investigated for different optical thicknesses, emissivities, scattering albedos and Planks number. The results are provided in both graphical and tabular forms. The flow lines, isotherms bring clarity in the understanding of flow behaviour and heat transfer characteristics.

Originality/value

Despite the idealized nature, the present study is quite essential to understand the cumbersome physics of realistic problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1992

S. BRANDON and J.J. DERBY

A finite element method for the analysis of combined radiative and conductive heat transport in a finite axisymmetric configuration is presented. The appropriate…

Abstract

A finite element method for the analysis of combined radiative and conductive heat transport in a finite axisymmetric configuration is presented. The appropriate integro‐differential governing equations for a grey and non‐scattering medium with grey and diffuse walls are developed and solved for several model problems. We consider axisymmetric, cylindrical geometries with top and bottom boundaries of arbitrary convex shape. The method is accurate for media of any optical thickness and is capable of handling a wide array of axisymmetric geometries and boundary conditions. Several techniques are presented to reduce computational overhead, such as employing a Swartz‐Wendroff approximation and cut‐off criteria for evaluating radiation integrals. The method is successfully tested against several cases from the literature and is applied to some additional example problems to demonstrate its versatility. Solution of a free‐boundary, combined‐mode heat transfer problem representing the solidification of a semitransparent material, the Bridgman growth of an yttrium aluminium garnet (YAG) crystal, demonstrates the utility of this method for analysis of a complex materials processing system. The method is suitable for application to other research areas, such as the study of glass processing and the design of combustion furnace systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 July 2005

H.M. Duwairi

To highlight the effect of viscous and Joule heating on different ionized gases in the presence of magneto and thermal radiation effects.

Abstract

Purpose

To highlight the effect of viscous and Joule heating on different ionized gases in the presence of magneto and thermal radiation effects.

Design/methodology/approach

The conservation equations are written for the MHD forced convection in the presence of thermal radiation. The governing equations are transformed into non‐similar form using a set of dimensionless variables and then solved numerically using Keller box method.

Findings

The increasing of fluid suction parameter enhances local Nusselt numbers, while the increasing of injection parameter decreases local Nusselt numbers. The inclusion of thermal radiation increases the heat transfer rate for both ionized gases suction or injection. The presence of magnetic field decreases the heat transfer rate for the suction case and increases it for the injection case. Finally, the heat transfer rate is decreased due to viscous dissipation.

Research limitations/implications

The combined effects of both viscous and Joule heating on the forced convection heat transfer of ionized gases for constant surface heat flux surfaces can be investigated.

Practical implications

A very useful source of coefficient of heat transfer values for engineers planning to transfer heat by using ionized gases.

Originality/value

The viscous and Joule heating of ionized gases on forced convection heat transfer in the presence of magneto and thermal radiation effects are investigated and can be used by different engineers working on industry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 30